
ESTABLISHMENT OF QC/QA PROCEDURES FOR OPEN-GRADED MIXES

Final Report SPR 5268

ESTABLISHMENT OF QC/QA PROCEDURES FOR OPEN-GRADED MIXES

SPR 5268

by

Kimberly D. Dunn Assistant Professor

and

Judith A. Gray

Graduate Research Assistant
Department of Industrial & Manufacturing Engineering

R.G. Hicks

Professor

and

Larry Ilg

Research Assistant

Department of Civil Engineering

Oregon State University Corvallis, OR 97331

and

Jeff Gower

Pavements Engineer

Oregon Department of Transportation

Salem, OR 97310

for

Oregon Department of Transportation Research Unit

September 1998

1. Report No. FHWA-OR-RD-99-12	2. Government Accession No.		3. Recipient's Catalog No.	
4. Title and Subtitle Establishment of QC/QA Pro	cedures for Open-Graded Mixes		aber 1998	
		6. Performing Orga	anization Code	
7. Author(s) Kimberly D. Dunn, Judith A. and Jeff Gower	Gray, R.G. Hicks, Larry Ilg,	8. Performing Orga TRR 97	anization Report No. 7-5	
Performing Organization Name and Address Oregon State University	ss DOT - Pavement Services	10. Work Unit No.	(TRAIS)	
	00 Airport Rd. SE alem, OR 97310	11. Contract or Gra SPR 52		
12. Sponsoring Agency Name and Address Oregon Dept of Transportation, F	ederal Highway Administration	13. Type of Report and Period Covered Final Report (April 1, 1995 - July 5, 1996)		
200 Hawthorne SE, Suite B-240 53	regon Division 30 Center St., Suite 100 alem, OR 97301	14. Sponsoring Age	ency Code	
15. Supplementary Notes				

16. Abstract

The State of Oregon has employed the use of porous concrete surfaces (E- and F-mixes) since the 1970s. The use of porous mixes has increased substantially in the past five years. Previously, no work had been done to evaluate whether the quality control/quality assurance (QC/QA) procedures used for dense-graded mixes were appropriate for open-graded mixes. This study consisted of a literature review, expert survey, and field survey of selected projects to determine the relative importance of factors such as asphalt content, gradation, voids, and moisture content on the long-term performance of the pavement.

The overall objective achieved by this study was the development of a basis for an improved QC/QA specification for porous pavements in Oregon. Specific objectives achieved include: 1) evaluated experiences of others to control quality of open-graded mixes; 2) conducted a field survey of selected projects in Oregon to determine what factors most affect pavement performance; 3) recommended modifications to existing specifications which would include pay adjustments; and 4) developed a plan for implementing the resulting recommendations.

This study found that the factors to be controlled during the production of porous pavements include asphalt content, gradation, and moisture content. The recommended weights for computing the composite pay factor were selected to contribute to improving contractor performance. The 25 mm sieve was eliminated as a pay factor and adjustments were made to the weights of the remaining factors to reflect the findings of this study. An implementation plan was developed and includes involvement of the specification committee, contractor quality control, training, and field testing the new specification.

17. Key Words Pay factors, porous mixes, a pavement performance, qual		18.	Distribution Statement No restrictions	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified		21. No. of Pages 107 + appendices	22. Price

		SI* (MOD)	(MODERN METRIC) C	ETRIC)	CONV	CONVERSION FACTORS	TORS		
	APPROXIMATE CONVERSIONS TO SI UNITS	CONVERSIO	NS TO SI UNITS			APPROXIMATE C	ONVERSION	APPROXIMATE CONVERSIONS FROM SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol	Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH					LENGTH		
.5	inches	25.4	millimeters	mm	mm	millimeters	0.039	inches	.E
Ħ	feet	0.305	meters	ш	ш	meters	3.28	feet	Ħ
уd	yards	0.914	meters	Е	Е	meters	1.09	yards	yd
Ē	miles	1.61	kilometers	km	km	kilometers	0.621	miles	· ¡
		AREA					AREA		
in ²	square inches	645.2	millimeters squared	mm ²	mm ²	millimeters squared	0.0016	square inches	in ²
ft ²	square feet	0.093	meters squared	m ²	m^2	meters squared	10.764	square feet	H ²
yd ²	square yards	0.836	meters squared	m ²	ha	hectares	2.47	acres	ac
ac	acres	0.405	hectares	ha	km^2	kilometers squared	0.386	square miles	mi²
mi ²	square miles	2.59	kilometers squared	km ²			VOLUME		
		VOLUME			mL	milliliters	0.034	fluid ounces	fl oz
tl oz	fluid ounces	29.57	milliliters	шŢ	r	liters	0.264	gallons	gal
gal	gallons	3.785	liters	ı	m³	meters cubed	35.315	cubic feet	ft³
ft³	cubic feet	0.028	meters cubed	m³	m^3	meters cubed	1.308	cubic yards	yd³
yd³	cubic yards	0.765	meters cubed	m³			MASS		
NOTE: Vol	NOTE: Volumes greater than $1000 L$ shall be shown in m^3 .	L shall be shown	in m³.		₽ 1 0	grams	0.035	onuces	ZO
		MASS			kg	kilograms	2.205	spunod	10
ZO	onuces	28.35	grams	50	Mg	megagrams	1.102	short tons (2000 lb)	L
QI	spunod	0.454	kilograms	kg		TEM	TEMPERATURE (exact)	xact)	
I	short tons (2000 lb)	0.907	megagrams	Mg	ွ	Celsius temperature	1.8 + 32	Fahrenheit	J.
	TEM	TEMPERATURE (exact)	act)			F 32	80 98.6 120 160	*F 212	
Ĥ,	Fahrenheit temperature	5(F-32)/9	Celsius temperature	၁့		-20 0	37 60	- 8	
-									
* SI is the sy	* SI is the symbol for the International System of Measurement	ystem of Measuren	nent						(4-7-94 jbp)

ACKNOWLEDGMENTS

The authors would like to thank the members of the Technical Advisory Committee (see list below) for their input regarding this project and their review of this report:

Rob Edgar, ODOT Research Unit
Jeff Gower, ODOT Pavements Engineer
Ivan Marrero, FHWA (Oregon Division)
Jim Huddleston, Asphalt Pavement Association of Oregon
Liz Hunt, ODOT Research Unit
Ken Karnosh, ODOT Contract Administration Engineer
Mike Remily, ODOT Pavement Quality Engineer
Gary Thompson, Asphalt Pavement Association of Oregon
Mike Wildish, Wildish Construction

DISCLAIMER

This document is disseminated under the sponsorship of the Oregon Department of Transportation, Oregon State University, and the United States Department of Transportation in the interest of information exchange. The State of Oregon and the United States government assume no liability for its contents or use thereof.

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official policies of the Oregon Department of Transportation, Oregon State University, or the United States Department of Transportation.

The State of Oregon and the United States government do not endorse products of manufacturers. Trademarks or manufacturers' names appear herein only because they are considered essential to the object of this document. This report does not constitute a standard, specification, or regulation.

ESTABLISHMENT OF QC/QA PROCEDURES FOR OPEN-GRADED MIXES

TABLE OF CONTENTS

Exec	utive Si	ummary		ix
1.0	INTE	RODUC	TION	1
	1.1	Proble	em Statement	1
	1.2	Backg	ground	1
	1.3	Objec	tives	1
2.0	LITE	RATUR	LE REVIEW	
	2.1	Factor	rs Affecting Performance	3
		2.1.1	Asphalt Content	
		2.1.2	Asphalt Type (Properties)	3
		2.1.3	Aggregate Gradation	4
		2.1.4	Aggregate Properties	
		2.1.5	Aggregate Moisture	7
	2.2	Factor	rs Used to Control Open-Graded Mixes	
		2.2.1	Oregon	8
		2.2.2	Florida	10
		2.2.3	Nevada	11
	2.3	•	djustment Factors	
		2.3.1	Background	
		2.3.2	Development of Pay Factor Schedules	
		2.3.3	Factors Used to Determine Pay Adjustment	
		2.3.4	Evaluation of Risk and OC Curves	
	2.4		nary	
3.0			VEYS	
	3.1	_	ts Evaluated	19
	3.2		ical Information	
	3.3		y Procedures	27
	3.4		y Results	
	3.5		nary	
4.0			RY EVALUATIONS	
	4.1		rogram	
		4.1.1	ODOT Tests	
	4.0	4.1.2	OSU Tests	54
	4.2	Test R		55
		4.2.1	Wolf Creek-W. Fork Dairy Creek	55
		4.2.2	Rufus-Arlington	59
		4.2.3	Baldock Slough-S. Baker	
		4.2.4	Forge RdLohert Rd	65

		4.2.5	Azalea-Jumpoff Joe	68
		4.2.6	Halsey Interchange-Lane County Line	71
	4.3	Discus	ssion	74
	4.4			74
5.0	EV	ALUATIO	ON OF FINDINGS	77
	5.1	Factor	s Affecting Performance	77
		5.1.1	Literature Review and Expert Survey	77
		5.1.2		78
		5.1.3	Follow-Up Interviews	78
	5.2	Factor	s to Control During Production	79
		5.2.1	Literature Review and Expert Survey	79
		5.2.2	Field Survey and Laboratory Evaluation	79
		5.2.3	Follow-Up Interviews and QC/QA Data	79
	5.3	Compa		82
	5.4			89
		5.4.1	Factors to Include	89
		5.4.2	OC Curve Analysis of Pay Factor Schedule	90
		5.4.3	Factor Weights in Composite Pay Factor Evaluation	91
	5.5	Potent	ial Impacts of Proposed Pay Factors	93
	5.6	Summ	ary	97
6.0	IMP	LEMENT	ATION PLAN	99
7.0	CON	NCLUSIO	NS AND RECOMMENDATIONS 1	01
	7.1	Conclu	isions1	01
	7.2	Recom	mendations for Further Study 1	01
8.0	REF	ERENCE	S 1	03
APPE	NDIC			
	A	Questi	onnaire Survey	
	В	Develo	opment of Mixing and Compaction Temperatures for F-Mixes	
	C		tory Test Data	
	D	QA Te	st Data Plotted on Control Charts	
	E	Pay Ac	ljustment Schedules – ODOT	
	F	C_{pk} An	alysis	
	G		ctors for Prior Projects Using Recommended Pay Factor Weights	
		•		
			LIST OF TABLES	
Table 2	2 1	Survey D	esponses: Asphalt Content Levels and Associated Danforman as Duckland	~ <i>1</i>
Table 2			Lesponses: Asphalt Content Levels and Associated Performance Problems	
Table 2			rom Using Asphalt Modifiers and Fillers in Porous Pavements	
Table 2			Teed for Ovality Control and Pay Adjustment	
Table 2			Jsed for Quality Control and Pay Adjustment	
Table 2			Control Tolerances (n = 1)	
I auto 2	۷.∪	Negulied	Tests for Flocess Control During Aggregate Production	9

Table 2.7	Factors Used to Determine Pay Adjustments for Porous Mixes (Survey)	15
Table 3.1	F-mix Projects Evaluated	19
Table 3.2	Mix Design Data	20
Table 3.3	Aggregate Gradation of the Mix Design	21
Table 3.4	J = =	
Table 3.5	Moisture Content Measurements – ODOT	27
Table 3.6	Project Performance (1995)	49
Table 3.7	Core Requirements for Test Plan	50
Table 4.1	Projects Sampled	51
Table 4.2		
Table 4.3	Summary of Asphalt Contents for All Projects Sampled	55
Table 4.4		
Table 4.5	Summary Volumetric Data for Wolf Creek-W. Fork Dairy Creek (OSU)	57
Table 4.6		
Table 4.7	Summary Volumetric Data for Rufus-Arlington (OSU)	60
Table 4.8	Volumetrics for Baldock Slough-S. Baker Interchange (ODOT)	63
Table 4.9	Volumetric Data for Baldock Slough-S. Baker Interchange (OSU)	63
Table 4.1	O Summary Volumetrics for Forge RdLobert Rd. (ODOT)	66
Table 4.1		
Table 4.1	2 Summary Volumetrics for Azalea-Jumpoff Joe (ODOT)	69
Table 4.1	3 Summary Volumetric Data for Azalea-Jumpoff Joe (OSU)	69
Table 4.1	4 Summary Volumetrics for Halsey Interchange-Lane County Line (ODOT)	72
Table 4.1.	5 Summary Volumetric Data for Halsey Interchange-Lane County Line (OSU)	72
Table 5.1	Results from Follow-Up Interviews with Selected Agencies	
Table 5.2	Projects and Factors for which Control Charts were Made	
Table 5.3	Were Control Limits within Specification Limits?	
Table 5.4	Comparison of QC Data and Core Results for 12.5 mm Sieve	
Table 5.5	Comparison of QC Data and Core Results for 6.25 mm Sieve	
Table 5.6	Comparison of QC Data and Core Results for 2 mm (#10) Sieve	
Table 5.7	Comparison of QC Data and Core Results for 0.75 mm (#200) Sieve	
Table 5.8	Comparison of QC Data and Core Results for Asphalt Content	
Table 5.9	Recommended Initial Pay Factors	
Table 5.10		
Table 5.1		
	LICT OF FIGURES	
	LIST OF FIGURES	
0.1	etern of Dear Adicator anta Car D	4.5
	story of Pay Adjustments for Porous Pavements	
	onventional OC Curve	
2.3 Pa	y Factor OC Curve	17
3.1 Ha	ysville-Battle Creek, MP 258	29
3.2 W.	Marquam-N. Tigard, MP 199.5	30
3.3 Su	nset Highway-Pacific Highway, 99W Interchange	31

3.4	Wolf Creek-W. Fork Dairy, MP 38	32
3.5	Corbett Interchange-Multnomah, MP 25	
3.6	Mt. Hood-Long Prairie at Miller Road	
3.7	Rufus-Arlington (West Unit), MP 120.5	
3.8	Rufus-Arlington (East Unit)	
3.9	Umatilla-McNary, MP 185	37
3.10	E. Pendleton-Emigrant Hill, MP 214.5	
3.11	Baldock Slough-S. Baker, MP 299	
3.12	Prineville Airport-Powell Butte Rd., MP 12.5	
3.13	Murphy RdLava Butte, MP 148.5	
3.14	Forge RdLobert Rd., MP 245	
3.15	Williamson River-Modoc Point, MP 256	
3.16	Jumpoff Joe-N. Grants Pass, MP 61	
3.17	Porous Mixes in Rainy Conditions	
3.18	Azalea-Jumpoff Joe, MP 79	47
3.19	Halsey Interchange-Lane County Line, MP 202	48
4.1	Laboratory Test Program	
4.2	Extracted Gradation for Wolf Creek-W. Fork Dairy Creek	
4.3	Average Extraction Gradation for Wolf Creek-W. Fork Dairy Creek	
4.4	ECS Results for Wolf Creek-W. Fork Dairy Creek	
4.5	Extracted Gradation for Rufus-Arlington	
4.6	Average Extracted Gradation for Rufus-Arlington	
4.7	ECS Results for Rufus-Arlington	
4.8	Extraction Results for Baldock Slough-S. Baker Interchange	
4.9	Average Extraction Results for Baldock Slough-S. Baker Interchange	
4.10	ECS Results for Baldock Slough-S. Baker Interchange	
4.11	Extraction Results for Forge RdLobert Rd.	
4.12	Average Extraction for Forge RdLobert Rd.	66
4.13	ECS Results for Forge RdLobert Rd.	67
4.14	Extraction Results for Azalea-Jumpoff Joe	68
4.15	Average Extraction Results for Azalea-Jumpoff Joe	69
4.16	ECS Results for Azalea-Jumpoff Joe	70
4.17	Extraction Results for Halsey Interchange-Lane County Line	71
4.18	Average Extraction Results for Halsey Interchange-Lane County Line	72
4.19	ECS Results for Halsey Interchange-Lane County Line	73
5.1	C 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	94
5.2	Detailed Comparison of CPF Values between CPF = .90 and CPF = 1.05	95

EXECUTIVE SUMMARY

The State of Oregon has employed the use of open-graded (porous) surfaces since the 1970s. The use of these mix types has increased substantially in the 1990s. The open-graded mixes have been found to possess numerous attributes including: reduced splash and spray, lower noise levels, and improved durability, to name a few.

As the use of porous mixes evolved, the quality control/quality assurance (QC/QA) procedures developed for dense-graded mixtures were used by Oregon Department of Transportation (ODOT) to control the construction of open-graded mixtures. The overall objective of this study was to develop improved QC/QA specifications for the porous mixes used in Oregon. Specific objectives included:

- 1) Evaluate experiences of other agencies in controlling the quality of open-graded mixes.
- 2) Survey selected projects in Oregon to determine which factors most affect pavement performance.
- 3) Develop recommendations for modifications to existing specifications which would include new weighting factors.
- 4) Create a plan for implementing the resulting recommendations.

The results of the literature review (and the associated survey) suggest that asphalt content and aggregate gradation are the most important factors related to the performance of porous pavement. Raveling tends to be the biggest problem, followed by fat spots. To a large degree, these are both related to variations in asphalt content. Potential for reduction of distress in porous mixes may lie in the alteration of asphalt properties through the use of modifiers, and through close control of the binder and mix temperatures.

Most agencies' control asphalt content and gradation for porous mixes, although mix temperature, moisture content, aggregate fracture, and other factors are also monitored. Some subset of the control factors, typically asphalt content and aggregate gradation, is used to determine pay adjustment factors to provide incentives to contractors who exceed construction specifications and disincentives to contractors who fail to meet specifications. Oregon uses these and moisture content to calculate pay adjustments.

The results of the field survey indicated that of the 19 projects surveyed, four projects were rated to be in fair condition, 11 projects were rated to be in good condition, three projects were found to be in very good condition, and one project was rated to be in excellent condition. Thus, overall performance of the open-graded projects in Oregon was found to be positive. Eight of the 19 projects exhibited measurable rut depths. The highest rut depths were from 9 to 13 mm. The

remaining projects that exhibited rutting were all under 6 mm. This could be considered normal rutting in Oregon due to the high use of studded tires. In addition, two projects were noted to have raveling problems and six projects exhibited fat spots (two were localized). Some pushing and shoving was also noted on one project.

The results of the laboratory tests on cores taken from six of the 19 projects indicated that all of the mixes were generally finer than the mix design gradation. The asphalt content for the cores tested showed two projects had high asphalt content, two projects had low values, and two were within design specifications. The samples tested in the Environmental Conditioning Systems (ECS) indicated the water sensitivity of the two known problem mixes and another mix was also shown to potentially have a water sensitivity problem. In specific, the following emerged from the results of the laboratory study:

- 1) Sampling at the cold feed may not be adequate to control the gradation of the opengraded mixes because the gradation of the cores tend to be on the fine side of the broadband.
- 2) Segregation may be an issue with the open-graded mixes leading to isolated fat spots and raveled areas.
- 3) Water sensitivity of mixes (treated with lime) did not appear to be a major problem. However, there may be isolated areas where lime is not present due to poor mixing. Performing tests to determine whether or not lime is present in mixes would help to resolve this question.
- 4) Additional study projects may be required to link the exact causes of the problems observed to gradation, asphalt and moisture content.

An evaluation of all data resulted in specific suggestions for factors to control (aggregate gradation, asphalt content, mix moisture, mix temperature) and recommendations for new pay adjustment schedules. In general, more weight was given to asphalt content and gradation and less to moisture content. It was also recommended that mix temperature be considered in one of the pay schedules.

A plan for implementing the study findings was developed and includes field tests of the new pay factors as well as training of personnel in QC/QA techniques.

1.0 INTRODUCTION

1.1 PROBLEM STATEMENT

The Oregon Department of Transportation (ODOT), as well as other highway agencies, has used porous asphalt concrete surfaces (E-mixes and F-mixes) since the 1970s. This is in part due to the success of open-graded emulsion mixes which were first used in Oregon in the late 1960s (Hicks, et al. 1995). The use of porous mixes has increased substantially in the past five years. However, to date, no work has been done to evaluate whether the quality control/quality assurance (QC/QA) procedures used for dense-graded mixes are appropriate for open-graded mixes. If they are not, then appropriate procedures/measurements for the QC/QA need to be developed for open-graded mixes.

This study consists of a literature review and survey of selected projects to determine the relative importance of factors such as asphalt content, gradation, voids, and moisture content on the long-term performance of the pavement. The information developed in this study will be used to develop improved guidelines for the use of porous pavements in Oregon as well as suggestions for changes to ODOT specifications.

1.2 BACKGROUND

ODOT has placed over 950 centerline kilometers of E-mix and F-mix in the past six years (1990-1995). In general, the field performance has been excellent; however, there have been situations in which performance has been less than satisfactory. Typical problems include:

- draindown during construction resulting in some problem fat spots in the mixes;
- early rutting; and
- raveling of the asphalt pavement.

Although ODOT presently has pay adjustments for dense-graded mixes based on evaluation of asphalt content, gradation, compaction, and moisture content, there is no indication whether these factors are appropriate for open-graded mixes.

1.3 **OBJECTIVES**

The overall objective of this study was to develop improved QC/QA specifications for the use of porous pavements in Oregon. Specific objectives include:

- 1) Evaluate experiences of other agencies in controlling quality of open-graded mixes.
- 2) Survey selected projects in Oregon to determine what factors most affect pavement performance.

- 3) Develop recommendations for modifications to existing specifications which would include new weighing factors.
- 4) Create a plan for implementing the resulting recommendations.

Chapter 2 provides the results of the literature review. Chapter 3 describes the findings from the survey of selected projects. Chapter 4 presents the results of a laboratory evaluation on cores taken from projects experiencing early distress. Chapter 5 includes an evaluation of the data collected as well as the recommended modifications to the current specifications for F-mixes. Chapter 6 presents a plan for implementing the results of the study. Chapter 7 provides the conclusions and recommendations.

2.0 LITERATURE REVIEW

The purpose of this chapter is to draw from the body of experience and research with porous pavements in the U.S. and abroad. References reviewed pertain to: factors affecting the performance of porous mixes; factors designated by agencies for control and acceptance of porous mixes; and the development of pay adjustment factors for completed projects. Included also is a discussion of findings from the survey conducted as a part of this study (Appendix A).

2.1 FACTORS AFFECTING PERFORMANCE

Several agencies now have porous pavements that have been in use for five or more years, providing an opportunity for agencies and researchers to identify the most common problems encountered with porous pavements and the primary factors that relate to those problems. This section summarizes agency reports and survey data regarding these factors.

2.1.1 Asphalt Content

The high air void content that is characteristic of porous mixes increases the air and moisture contact with the surface of the binder film, compared to dense-graded mixes. This can result in loss of durability or premature aging, whereby the pavement becomes more brittle and raveling occurs (Booth 1991, Smith 1992). An overview of the experience with porous mixes in Europe finds that the "main roots of distress are aging of binder, causing raveling," and loss of adhesion between binder and aggregate, due to moisture, leading to stripping (van Gorkum 1991). The U.S. experience parallels that in Europe. Severe raveling was given as a primary factor in the decision to discontinue use of porous mixes in Louisiana, Maryland, and Arkansas (Arkansas State Highway 1990, Smith 1992). In the survey conducted for this research, raveling is consistently given as the most common type of failure. Current research is addressing the use of asphalt modifiers (e.g., rubber, polymers) to reduce the deterioration related to the high surface/air contact, while maintaining the high air voids content.

Increasing the asphalt content can result in a mix that is more resistant to aging, but can also lead to draindown and subsequent fat spots (Rebbechi 1986, Younger, Hicks and Gower 1994). Furthermore, higher asphalt content can increase the propensity to clog and deform (Colwill et al. 1993). Survey results indicate that raveling and fat spots (due to draindown) are the most common problems found in porous mixes, leading many responders to simultaneously list "too little asphalt" and "too much asphalt" as the sources of problems with porous mixes. Table 2.1 provides a summary of these survey responses.

2.1.2 Asphalt Type (Properties)

Many researchers are looking for a solution to this problem by improving the rheological properties of the asphalt binder. What is needed is a thick binder film to increase durability, one

that has good adhesion to aggregate, and a binder that is less susceptible to oxidation (van Gorkum 1991, International Road Federation 1992, Page 1993). Improvements in the asphalt binder have been identified as having the "greatest potential for improvement" (Page 1993). To that end, asphalt modifiers and tighter controls on mix temperatures have been applied by many agencies.

Table 2.1: Survey Responses: Asphalt Content Levels and Associated Performance Problems.

Agonov	Asphalt Con	tent
Agency	Too Much	Too Little
Arizona DOT	fat spots	raveling
CalTrans	fat spots and rutting	raveling
Florida DOT		raveling
Louisiana Transportation Research Center		raveling
Maryland State Highway Administration		raveling
Nevada DOT	fat spots	raveling
Texas DOT	fat spots	raveling
Washington State DOT	fat spots	
LCPC (France)		raveling
Delft University of Technology (The Netherlands)		raveling
Ohannesburg Road Directorate (South Africa)	fat spots and rutting	raveling
Spain	rutting	raveling
EMPA (Switzerland)	fat spots	

Fiber additives can help maintain void content (*Huet et al. 1990*), reduce drain own (*Colwill et al. 1993*), and allow for a higher binder content, with good durability (*Decoene 1990*). The use of polymer modifiers reduced clogging, raveling and rutting in South Australia and Spain (*Perez-Jiminez and Gordillo 1990*, *Booth 1991*). Hydrated lime (at 1% by mass of mineral aggregate) improves durability (*Rebbechi 1986*) and reduces stripping (*van Heystraeten and Moraux 1990*). Table 2.2 summarizes some of the research on asphalt modifiers and fillers, and the associated findings.

2.1.3 Aggregate Gradation

Experience in Florida with porous mixes has shown that aggregate gradation is a factor that has a high potential for improvement, second only to asphalt type. Tighter control on 2 mm (#10) and 0.075 mm (#200) sieves was used to address problems with fat spots (Page 1993). In Connecticut, adjustments were made in the level of fines and coarse aggregate to remedy loss of permeability (Smith 1992). Florida and the UK also show excess fines contributing to clogging (Colwill et al. 1993, Page 1993). In Arizona, changes in aggregate gradation, combined with changes in asphalt content are found to have significant effects on air voids, density, resilient moduli and permeability (Gemayel and Mamlouk 1993). Clogging has not yet been a significant problem in Oregon (Younger, Hicks and Gower 1994). According to a survey response, research is underway in Georgia to evaluate the effects of gradation, polymer-modified asphalt, and various fibers on porous mix performance. Table 2.3 lists the broadband limits for aggregate gradation for Oregon and other agencies.

Table 2.2: Results from Using Asphalt Modifiers and Fillers in Porous Pavements.

State/Country	Modifier/Filler	Reference	Results				
	anti-strip	Smith, 1992	Use of lime as an anti-strip alleviated stripping in the underlying AC layer.				
Georgia	other modifiers/ fillers	Survey	Current research to evaluate the effect of gradation, polymer-modified asphalt and various fibers on performance.				
Maryland	polymer additive	Smith, 1992	Severe raveling in 1989-91 halted use of open graded friction courses for further study. Use of polymer additive being tested in 1992.				
Michigan	latex-rubber	Smith, 1992	Use of latex-rubber (3% rubber solids of the total placement weight) helped reduce premature raveling.				
Oregon	rubber, (PBA- 6GR)	Hunt, 1995	Blending of the asphalt cement with rubber is reported to improve engineering properties of the binder, including resistance to oxidation and aging.				
Washington	rubber; polymer mixes	Anderson, correspondence	Research on rubber-asphalt, conventional mix, and polymer mix as yet reveals no apparent increase in pavement life.				
Relgium	filler	van Heystraeten, 1990	Spreading of 50 g/m ² of filler (fines < .08 mm) on the surface before opening to traffic avoids stripping of the aggregate while the pavement is new.				
Belgium	cellulose fibers	Decoene, 1990	Tests showed significant reduction in draindown with the use of cellulose fiber (use of asbestos and mineral fibers is prohibited).				
France	fiber based, SBS modified, and pure asphalt tested	Huet, 1990	Fiber-based asphalt helped maintain void content and had least rutting; pure asphalt had the most rutting.				
The Netherlands	Ca(OH) ₂	Survey	Ca(OH) ₂ added to fines reduced raveling.				
South Australia	EVA polymer	Booth, 1991	Use of EVA polymer-modified asphalt reduced raveling, clogging and rutting, but leaves pavement slick and glossy for longer.				
Spain	polymer additive	Perez-Jiminez, 1990	Polymeric asphalt retained higher adhesiveness after immersion in water; reduced draindown; maintained void content.				
		Ruiz, 1990	Hydrocarbonated binder provided thicker binder film.				
UK	rubber, mineral or organic fiber	Colwill, 1993	Allows higher binder content (around 4.5%) without drainage and clogging.				
Victoria, Australia	filler	Rebbechi, 1986	Use of hydrated lime filler reduces stripping and improves durability.				

2.1.4 Aggregate Properties

Aggregate type is one factor that can minimize raveling, as well as affect skid resistance. In Florida, 90% of the open-graded friction course pavements use oolitic limestone, although crushed granite, gravel and slag have also been used. Florida evaluates other sources of aggregate based on in-place friction testing. Gravel was required to have 85% crushed faces (for aggregate retained on the No. 4), but the use of gravel has been discontinued due to problems with raveling (*Page 1993*).

Table 2.3: Aggregate Gradation Broadband Limits.

U.S. AGENCIES

	Percent Passing											
Sieve Size	Georgia	Florida	Florida Louisiana		Calif	ornia	Washington	Ore	gon*			
Sieve Size	D mix	FC-2	Α	В	1/2" max	3/8" max	Class D	Е	F			
1" (25 mm)							99-100		99-100			
3/4" (19 mm)				100	100		85-96	99-100	85-96			
1/2" (12.5 mm)	100	100	100	90-100	95-100	100	60-71	95-100	60-71			
3/8" (9.5 mm)	85-100	85-100	90-100	50-80	78-89	90-100						
1/4" (6.25 mm)							17-31	52-72	17-31			
No. 4 (4.75 mm)	20-40	10-40	20-50	10-30	28-37	29-36						
No. 8 (2.36 mm)	5-10	4-12	5-15	5-20	7-18	7-18						
No. 10 (2 mm)							7-19	5-15	7-19			
No. 16 (1.18 mm)	-	-	=	-	0-10	0-10						
No. 200 (0.075 mm)	2-4	2-5	2-6	2-6	0-3	0-3	1-6	1-5	1-6			

^{*}Limits used during project study period. Revised limits are available at www.odot.state.or.us

INTERNATIONAL AGENCIES

		P	ercent Passing			
Sieve Size	Spain		Haitad Vinadam	A Zero E.	Viotorio Austrolio	
Sieve Size	P12	PA12	United Kingdom	Australia	Victoria, Australia	
1.1" (28 mm)			100			
3/4" (19 mm)	100	100	95-100		100	
1/2" (12.5 mm)	75-100	70-100	55-75	100	100	
3/8" (9.5 mm)	60-80	50-80			95	
1/4" (6.25 mm)			20-30	29	61	
No. 4 (4.75 mm)	32-46	18-30			30	
No. 6 (3.35 mm)		2	7-13			
No. 8 (2.36 mm)	10-18	10-22			12	
No. 10 (2 mm)				10	10	
No. 30 (0.6 mm)	6-12	6-13			8	
No. 50 (0.3 mm)					6	
No. 100 (0.15 mm)					4	
No. 200 (0.075 mm)	3-6	3-6	3.5-5.5	0-4	4	

One report on the experience with porous mixes in Spain gives the following aggregate properties to minimize raveling: abrasion loss value $\leq 20\%$; flakiness index ≤ 25 ; polished stone value ≥ 0.45 or 0.4, depending on traffic; two or more fractured faces on 100% or 75%, depending on traffic (*Ruiz et al. 1990*).

Georgia aggregates have been prone to stripping in the presence of water, and problems with moisture-induced stripping in the underlying AC layer occurred. These were remedied by adding lime as an anti-strip agent (Smith 1992).

In general, use of skid-resistant aggregate is suggested as a way to maintain surface friction (*Rebbechi 1986*). FHWA Technical Advisory T5040.31 recommends using 100% crushed aggregate, to enhance structural stability (*FHWA 1978*).

2.1.5 Aggregate Moisture

Survey responses indicate that aggregate moisture is an important factor influencing pavement performance. Connecticut cites damp conditions at paving projects as a primary reason for discontinuing the use of porous mixes. No reports, however, were identified that deal specifically with aggregate moisture effects on porous pavements.

2.2 FACTORS USED TO CONTROL OPEN-GRADED MIXES

In establishing Quality Control (QC) guidelines, the contracting agency determines the production factors (control factors) that most influence pavement performance, and the desirable values (or range of values) for those factors. The contractor has the responsibility to perform process control tests according to agency guidelines and maintain specified values during manufacture and placement of the pavement. The agency is responsible for acceptance testing on a lot-to-lot basis, and the determination of pay adjustments, where applicable. Quality Assurance (QA) tests are conducted by the agency to verify that control factors are within acceptable ranges. Good QC/QA procedures must include consideration of the variability associated with sampling and testing methods, as well as the variability of the material. Failure to do so can result in inappropriate pay reductions to the contractor (see Amirkhanian et al. 1994). Table 2.4 summarizes QC factors and the factors used to determine pay adjustment in Florida, Nevada, and Oregon for porous mixes. Table 2.5 gives the corresponding QC tolerances.

Table 2.4: Factors Used for Quality Control and Pay Adjustment.

Florid	a		Nevac	la		Orego		
Factor	QC	Pay Factors	Factor	Factor QC P		Factor	QC	Pay Factors
			Aggregate			1" (25 mm)	/	1
			gradation except Nos. 4 & 16.	1		3/4" (19 mm)	1	~
1/2" (12.5 mm)	1					1/2" (12.5 mm)	1	✓
3/8" (9.5 mm)	1							
						1/4" (6.25 mm)	1	/
No. 4 (4.75 mm)	1	1	No. 4 (4.75 mm)	1	✓			
No. 8 (2.36 mm)	1	1						
						No. 10 (2 mm)	✓	1
			No. 16 (1.18 mm)	1	✓			
No. 200 (0.075 mm)	1	1				No. 200 (0.075 mm)	~	1
Asphalt content	V	1	Asphalt content	1	1	Asphalt content	✓	1
			Binder temp	1				
			Mix temp	1		Mix temp	✓	
			Moisture content	1		Moisture content	✓	1
			Liquid limit plastic index	1				
			Fractured faces	1				
			Absorption	V				

Table 2.5: Quality Control Tolerances (n = 1).

Factor	Florida (Table 3331-3)		evada de 411.6)	Oregon* (SP00745.14)
25 mm (1")	(======================================	1		(51 307 15111)
19 mm (3/4")				broadband limits
12.5 mm (1/2")	±7		±7	broadband limits
9.5 mm (3/8")	±7		±7	
6.25 mm (1/4")				±5
4.75 mm (No. 4)	±7		±7	
2.36 mm (No. 8)				
2 mm (No. 10)	±5.5			±2
1.18 mm (No. 16)			±4	
.425 mm (No. 40)				
.177 mm (No. 80)				
0.075 mm (No. 200)	±2		±2	±2
Asphalt content	±0.55% extraction ±0.15% printout	±0.4%	% nuclear	±0.5% nuclear ±0.2% meter method
Mix temperature	***************************************	±	20°F	±20°F
Moisture content		maxi	mum 1%	maximum 0.7%
Absorption		maxi	mum 4%	
Fractured faces		minin	num 90%	
Tractured faces		minimu	m 2 fracture	
		AC-30P	290-350°F	
Binder temperature at		AC-20P		
plant		AC-30	270-350°F	
		AC-20		
Liquid limit plastic index			mum 35,	
Esquia mine plastic mack		N.F	P. (0-3)	

^{*}Limits used during project study period. Revised limits are available at www.odot.state.or.us.

2.2.1 Oregon

In Oregon, the contractor performs process control during aggregate production. Verification testing is performed by ODOT. Ranges are given within which the test results must be. If results fall outside the acceptable range, the contractor must work with the agency to resolve the difference or else the material is rejected.

ODOT specifications also provide testing frequency and method guidelines for process control during asphalt mix production. However, the frequency of testing for agency acceptance is higher than for process control, and the agency is required to provide a Composite Pay Factor (CPF) to the contractor for each day's production on the morning following production. Because their aim is to maximize the CPF, contractors often make adjustments to production methods based on the results of acceptance testing by the agency, rather than their own process control testing. A transition toward total contractor process control is now in progress, and is expected to be complete by 1998 (Huddleston 1993). At the time of printing, contractors conduct process and product control testing.

2.2.1.1 Process Control

Table 2.6 shows the tests required of contractors for aggregate process control. Split samples must be provided to the project manager. The agency engineer may perform any of the tests. If a sample test fails to meet specifications, a second test is performed from the contractor's portion of the split sample. If the second test also fails to meet specification, the material is considered out-of-specification.

Table 2.6: Required Tests for Process Control During Aggregate Production.

Test	Aggregates	Minir	num Frequency Sch	edule
1 650	1166106460	Start of Production	One per 5 shifts*	One per shift
Fracture of gravel	coarse/fine	X	X	
Wood particles	coarse	X	X**	
Dust or clay coating	coarse	X	X**	
Elongated pieces	coarse	X	Χ"	
Sieve analysis	coarse/fine	X		X***
Sand equivalent	fine	X		х"

^{*} A shift means one per day or 1,000 tons, whichever results in the greatest sampling frequency.

For process control of asphalt mixture production, the contractor is responsible for testing asphalt content, aggregate gradation, and lime content. Test frequency for the asphalt mixture was based on a 450 Mg (500 ton) sublot size for jobs sampled. The current sublot size is 1000 Mg (1100 tons). The following test methods are prescribed:

Asphalt Content (one of the following):

- the plant's asphalt metering and weighing system
- extraction of bitumen by centrifuge or vacuum (ODOT TM 309)
- nuclear asphalt content gauge (ODOT TM 319)

<u>Gradation</u> (one of the following):

- cold feed sieve analysis (AASHTO¹ T 27)
- mechanical analysis of extracted aggregate (ODOT TM 309)

Anti-Strip Additives:

- the plant's metering and weighing system
- certification for amines

May be waived after first five shifts if allowed by the Materials Unit Engineer.

[&]quot;" Perform a minimum of three tests.

¹ American Association of State Highway and Transportation Officials

2.2.1.2 Acceptance

Acceptance of aggregate is based on the results of the process control tests listed in Table 2.6, as well as the verification tests. Material that fails to yield a Pay Factor of "1" for each size of aggregate is considered out-of-specification and is rejected or given reduced pay. Additional aggregate may be added only after the non-specification aggregate has been removed in an amount sufficient to provide a Pay Factor of "1".

Agency acceptance procedures for asphalt mixture during the study period are based on 450 Mg (500 ton) sublots with samples taken from the discharge at the paving plant. The current agency acceptance testing frequency is one tenth of the QC frequency. The following tests are used:

Gradation (one of the following):

- cold feed or hot bin samples (AASHTO T11/T27)
- solvent extraction (ODOT TM 309) may be requested by the contractor

Asphalt Content:

- nuclear method (ODOT TM 319)
- meter method (ODOT TM 321/TM 322)

Moisture:

• microwave method (ODOT TM 311)

2.2.1.3 Out-of-Specification Procedures

If the gradation or asphalt content acceptance test results vary by more than 1-1/2 times the tolerance values from the JMF, a second test is run from the backup sample. The test result which yields the highest CPF is used. Asphalt mix that yields a CPF of less than 1.0 is considered out-of-specification. A pay adjustment of up to 25% may be applied. Any material falling below the 0.75 CPF can be removed without payment at the agency's discretion.

2.2.2 Florida (FDOT Specifications: Sections 331, 336)

In Florida, the contractor provides personnel, certified by the state, to perform the QC tests. QC tests are performed for all sieve sizes and for asphalt content. The results of the tests are maintained on control charts.

The mix is accepted at the plant, with respect to gradation and asphalt content, on a lot to lot basis. These QA test results serve as the basis for determining pay adjustment factors. Furthermore, the engineer can also deem a lot unacceptable "for reason of being excessively segregated, aggregates improperly coated, or excessively high or low mix temperature."

2.2.2.1 Test Methods

Asphalt content can be measured by extraction analysis, or by printout for automatic batch plants. For the automatic printout, the tolerance range is only $\pm 0.15\%$, compared to $\pm 0.55\%$ for extraction testing (sample size n = 1). Extraction analysis is required for aggregate gradation acceptance.

2.2.2.2 Lot Sizes, Test Frequency

A lot is defined as 3630 Mg (4000 tons) at the plant, divided into four equal sublots of 910 Mg (1000 tons). A minimum of one extraction gradation analysis must be conducted for each day's production, or following any change in the production process.

2.2.2.3 Out-of-Specification Procedures

The mix is out of specification if the asphalt content is outside of the target content by 0.55% (extraction test), or if the aggregate gradation falls outside of the given limits. If this happens on two consecutive tests, the process is stopped until the problem is corrected. A lot is considered out of control if any individual test falls within the 80% pay factor values for sample size n=1.

2.2.3 Nevada (NDOT Specifications: Section 411)

In Nevada, the contractor performs the QC and QA tests. The QA tests are used to determine pay adjustments. Verification tests are performed by the contracting agency. Ranges are given within which the QC/QA test results must be in agreement with verification test results. If results fall outside of the acceptable range on two or more tests, referee tests may be conducted.

2.2.3.1 Test Methods

Solvent extraction is usually required for QC tests of aggregate gradation, although cold feed or hot bin samples can be used under certain conditions. A nuclear asphalt content gauge is used to determine asphalt content.

2.2.3.2 Lot Sizes, Test Frequency

A production lot is made up of four sublots. A sublot is either 230, 450, or 680 Mg (250, 500 or 750 tons), as determined by the contractor prior to the beginning of production. Each sublot is tested for gradation and asphalt content, with tests on other QC parameters conducted for every lot. Temperatures of the mix and the binder are continuously monitored.

2.2.3.3 Out-of-Specification Procedures

If QC tests reveal deviations from operational ranges (for gradation, moisture, asphalt temperature, or mix temperature) once, the contractor should evaluate the process. If it

happens twice, consecutively, corrective action should be taken. After three consecutive tests outside of the acceptable range, the production process is stopped.

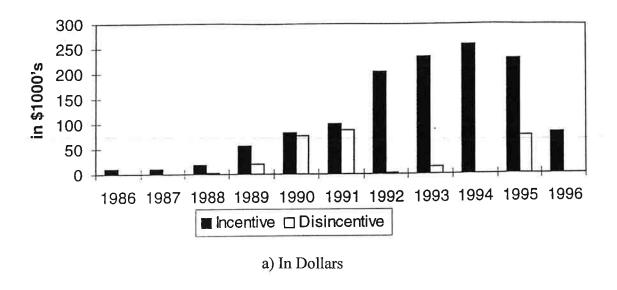
2.3 PAY ADJUSTMENT FACTORS

The use of pay adjustment factors for asphalt pavement is an integral part of the implementation of End Result Specifications (ERS). Method specifications require 100% compliance with specification targets and provide little or no guidance for work that is below target, but still of some value.

The ERS should take account of variability due to testing and sampling methods, as well as variability in materials. Incentives and disincentives in payment to contractors are provided relative to the degree of compliance with specifications. This section reviews current literature on the development of pay adjustment schedules, and the factors used by various agencies to determine pay adjustment factors for porous payements.

2.3.1 Background

The State of Oregon began using statistical specifications for asphalt pavements with provisions for incentives and disincentives in 1985. A questionnaire distributed to ODOT project managers, region materials inspectors and region assurance specialists revealed that 76% were of the opinion that the bonus pay system improves cooperation with the contractors, and that 57% considered the bonus pay system effective. Though porous pavements are given some mention, the questionnaire and related report deal primarily with dense-graded mixes (Scholl 1991).


By the end of 1994, ODOT bonuses for F-mix (porous pavement) totaled \$973,002, while penalties were \$203,447, for net bonus payments of \$769,555. This amount corresponds to an average Composite Pay Factor per ton of 1.012². Figure 2.1 tracks the history of bonus and penalty payments since 1985 both in total dollars and dollars per ton by region.

2.3.2 Development of Pay Factor Schedules

The National Cooperative Highway Research Program (NCHRP) Synthesis 212 describes two general types of pay adjustment systems: judgment plans and rational plans (Chamberlain 1995). The intention of judgment plans is to "force contractual compliance by exacting a monetary penalty," while the rational approach seeks to link final compensation to the quality of the final product. Using a rational pay adjustment schedule, penalties charged to contractors should reflect anticipated costs associated with reduced performance life (Weed 1984).

²403 OR 0745 (Standard or Heavy Duty) Statistical Asphalt Concrete Mixture Summary for "F" mixtures, Revised 03-28-95

History of Pay Adjustments for Porous Pavements

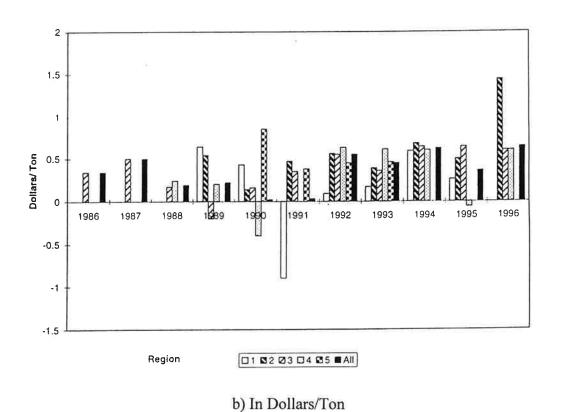


Figure 2.1: History of Pay Adjustments for Porous Pavement.

Likewise, bonuses should reflect enhanced value of the pavement (Chamberlin 1995). In brief, an agency determines an acceptable quality level (AQL) at which full pay is warranted, and a rejectable quality level (RQL) at which the pavement can be rejected. Final products with higher quality than the AQL receive a bonus. In theory, Oregon's 5% AQL should lead to an expected pay factor of 1.00 for work with 5% defects. However, due to rounding and sample size determination, the expected pay factor for 5% AQL work is greater than 1.00 (Scholl 1991).

Oregon uses a schedule of pay factors, based on the schedule developed for the Federal Highway Administration (FHWA) in 1985 (ODOT 1991). For each sublot of material, values are taken for each of the pay factor constituents. Then, for the entire lot, a pay factor is determined based on the standard deviations of each constituent. The schedule takes into account the wider confidence intervals associated with small sample sizes.

Other states, including New Jersey, use a pay factor equation. An example of a simple linear model might be:

Pay Factor = 105 - Percent Defective

This would provide a 5% bonus for material with no measurable defects and no bonus or penalty for material with 5% defective material. Percent defective values above 5 cost contractors a unitary penalty in pay.

Nevada bases pay adjustment on absolute deviation from target values (Nevada DOT 1995). For each constituent, a pay factor value is provided for a given range of difference from target values.

2.3.3 Factors Used to Determine Pay Adjustment

Of interest for this research is the *absence* of literature addressing pay factors for porous pavements. Estimates of enhanced or diminished performance are derived using pavement factors deemed most influential, with respect to their values relative to specification targets and tolerances. With dense-graded mixes, the most important factor influencing performance is compaction, with lower air void content associated with improved pavement performance (*Puangchit et al. 1982*). As a result, Oregon uses a 0.40 weight allocated to compaction in the determination of composite pay factors for asphalt concrete pavement – the highest weight for any individual factor. Current practice with porous pavements is to set the factor value equal to one, thereby "eliminating" the effect of the compaction term. The concern has been raised that this makes it too easy to get a high pay factor when gradation or asphalt content is outside specification (*Scholl 1991*).

Asphalt content and aggregate gradation are the factors most commonly used by state highway agencies to determine pay adjustment for porous mixes. Nevada uses "ride quality" in addition to factors related to pavement failure. Before halting use of porous pavements, Louisiana had a 10% penalty for failure to use an anti-strip agent. Table 2.7 summarizes the factors used by agencies to determine pay factors for porous mixes.

Table 2.7: Factors Used to Determine Pay Adjustments for Porous Mixes (Survey).

Agency	Aggregate Gradation	Asphalt Content	Moisture
California	1		
Florida	/	/	
Georgia	✓ ·	/	
Maryland		✓	
Nevada	/	/	
Oregon	· ·	/	1
Washington	✓		

Oregon. Oregon uses individual factors for aggregate gradation, asphalt content, moisture, and compaction, combined with factor weights, to get the composite pay factor (CPF). Constituent factors are weighted as follows (see Section 00745.95 of the ODOT Specifications):

Const	ituent	Weight
25 mm	(1")	1
19 mm	(3/4")	1
12.5 mm	(1/2")	1
6.25 mm	(1/4")	5
2 mm	(No. 10)	5
0.425 mm	(No. 40)	3
0.075 mm	(No. 200)	10
Asphalt content		26
Moisture content		8
Compaction		40

For porous pavement, compaction and No. 40 aggregate have pay factors of one.

Washington. Like Oregon, Washington uses a system of weighted factors (but for aggregate gradation only) to determine a CPF for porous mixes. The weights are as follows:

Perce	ent Passing	Factor Weight
25 mm	(1")	10
19 mm	(3/4")	10
12.5 mm	(1/2")	20
6.25 mm	(1/4")	25
2 mm	(No. 10)	15
0.075 mm	(No. 200)	20

These are the current weights which have changed since publication of the 1994 specification and are documented in a supplement.

Florida. Florida calculates pay adjustment based on asphalt content (both extraction and printout) and gradation (No. 4, No. 10, and No. 200). When two or more gradation factors fall

below 1.00, in one lot of material, the greatest reduction in payment is used (Table 331-6, footnote). A lot is considered out of control if any individual test falls at or below the 80% pay factor values for sample size n = 1. The agency has the option of requiring removal and replacement at no cost for such work.

Nevada. In determining pay adjustment factors, Nevada has provisions for using a ride quality factor in addition to characteristics of the pavement mix. Individual pay factors from 0.70 to 1.05 are determined for gradation (No. 4 and No. 16) and asphalt content. If each of the factors is 1.0 or more, the highest factor is used. Otherwise, the lowest factor is used. If a lot falls below the 70% pay factor limit, the contractor is responsible for removal and replacement of the material.

2.3.4 Evaluation of Risk and OC Curves

Central to the implementation of QC/QA procedures is the sharing of responsibility between the agency and the contractor. Risks involved in statistical acceptance and pay adjustment methods are the owner's risk of accepting poor quality work, and the contractor's risk of rejecting good quality work. A recent study by Amirkhanian et al. (1994) found that most state agencies fail to accurately account for testing and sampling variability, thereby shifting a disproportionate share of risk to the contractor, resulting in a tendency toward underpayment. Oregon's pay factor tables were developed with the intention to maintain contractors' risk at 5%, while the risk to the state is in the range of 1% to 48%, depending on the sample size (Scholl 1991).

Operating characteristic (OC) curves can be used to evaluate the risks to both owner and contractor, and the ability of a pay adjustment schedule to maintain them at acceptable levels. A conventional OC curve (Figure 2.2) plots the probability of acceptance on the vertical axis, against the quality level of the material. For use in evaluating pay factors, the vertical axis represents pay factor levels (Figure 2.3). The AQL level should exactly correspond to a pay factor of 1.00, and the lowest pay factor is represented at the horizontal axis. OC curves have been called the "only way" to know in advance whether the payment plan will work as intended (Weed 1993, Chamberlin 1995). They can be constructed using special software, or with computer simulation. Oregon's current pay adjustment system is analyzed using the OC curves in Chapter 5 of this report.

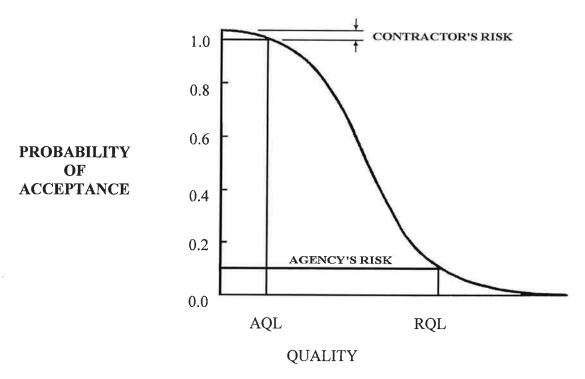


Figure 2.2: Conventional OC Curve

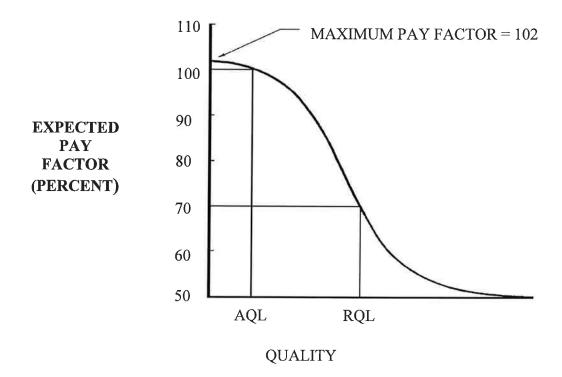


Figure 2.3: Pay Factor OC Curve

2.4 SUMMARY

The survey responses, as well as recent literature, suggest that asphalt content and aggregate gradation are the most important factors related to the performance of porous pavement. Raveling tends to be the biggest problem, followed by fat spots. To a large degree, these are both related to asphalt content. Potential for improvements may lie in the alteration of asphalt properties through the use of modifiers, and by close controls of binder and mix temperatures.

Most agencies' quality control methods for porous mixes emphasize asphalt content and gradation, although mix temperature, moisture content, aggregate fracture, and other factors are also monitored. Some subset of the control factors, typically asphalt content and aggregate gradation, is used to determine pay adjustment factors, providing incentives to contractors who exceed construction specifications, and disincentives to contractors who fail to meet specifications. Oregon uses these and moisture content to calculate pay adjustments.

Oregon's pay adjustment determination is based on a weighted average of individual pay factors for various factors. Developed for dense graded mixes, compaction carries a weight of 0.40, the highest given to any individual factor. Since compaction was considered not a suitable measure for porous mixes, a compaction pay factor of "1" is used. In developing pay adjustment schedules, the use of operating characteristics (OC) curves is critical to evaluating the distribution of risks to both the contractor and the contracting agency.

3.0 FIELD SURVEYS

This chapter describes the results of field surveys conducted in June 1994 and July 1995 on open-graded projects which either had no problems or had experienced some problem shortly after construction. Historical information on the projects was provided by ODOT. Both surveys were conducted by co-authors Gower and Hicks.

3.1 PROJECTS EVALUATED

The state project managers/district maintenance engineers were asked to suggest projects with good performance records and those with poor performance records to be included in the survey. The projects included in the surveys are given in Table 3.1.

Table 3.1: F-mix Projects Evaluated.

Hwy. No.	Project Name	Year	Mile	Post	Treatment Type
		Constructed	Begin	End	- Treatment Type
001	Hayesville-Battle Creek	1990	250.0	259.0	grind/2" overlay
001	W. Marquam-N. Tigard	1990	194.2	299.5	grind/2" overlay
144	Sunset HwyPacific Hwy.	1994	0.000	7.5	grind/2" overlay
047	Wolf CrW. Fork Dairy Cr.	1993	37.4	46.3	2" overlay
002	Corbett IntchMultnomah	1991	22.1	31.0	2" F/0-6" B
026	Mt. Hood-Long Prairie	1995	88.0	91.0	2" F-mix overlay
002	Rufus-Arlington (W. Unit)	1993	109.0	125.8	2" F/2" B
002	Rufus-Arlington (E. Unit)	1991	125.8	138.3	2" F/2" B
002	Umatilla-McNary	1993	182.6	185.7	2" F/2" B
006	E. Pendleton-Emigrant Hill	1992	213.0	218.0	grind/4" F-mix
006	Baldock Slough-S. Baker	1991	297.1	306.5	grind/2" F/2" B
041	Prine. Airport-Powell Butte	1995	6.8	16.4	2" F/2-4" B
004	Willowdale-Qualle Rd.	1995	75.0	81.0	2" F/3" B
004	Murphy RdLava Butte	1989	146.6	150.8	2" F/2" B
004	Forge RdLobert Rd.	1990	241.0	251.6	2" F/2" B
004	Williamson RivModoc Pt.	1991	253.9	256.1	2" F/ 2" B
001	Jumpoff Joe-N. Grants Pass	1991	67.1	58.2	grind/4" F
001	Azalea-Jumpoff Joe	1994	88 (south) 90 (north)	67.1	grind/2" F
001	Halsey IntchLane Co. Line	1994	203.55	216.14	2" F/2-9" B

Note: 1" = 25 mm

3.2 HISTORICAL INFORMATION

Prior to conducting the survey, mix design and QC/QA data were obtained for each of the projects. Table 3.2 summarizes the mix design information provided by ODOT for each project and Table 3.3 provides the aggregate gradations for each of these projects.

Table 3.2: Mix Design Data.

				Asnhalt		Z:	Placement
No.	Project Name	Year Completed	Asphalt Type	Content	Additive	Temp.*	Temp.*
100	Hayesville-Battle Creek	1990	Chevron, AC-30	5.5	Aggregate treated with lime	249-254	232-240
	W. Marquam-N. Tigard	1990	US Oil, AC-30	5.2	Aggregate treated with lime	252-259	236-244
144 St	Sunset HwyPacific Hwy.	1994	EOTT, PBA-6	5.6	Aggregate treated with lime	256-263	240-248
047 W	Wolf CrW. Fork Dairy Cr.	1993	McCall, PBA-5	6.0	None	247-255	231-240
002 C	Corbett IntchMultnomah	1991	Chevron, PBA-5	5.5	Aggregate treated with lime	250-258	234-242
026 M	Mt. Hood-Long Prairie	1995	Albina, PBA-6	6.0	Aggregate treated with lime	271-279	254-262
002 R	Rufus-Arlington (W. Unit)	1993	Chevron, PBA-6	5.8	1% lime treatment	273-279	261-267
002 R	Rufus-Arlington (E. Unit)	1991	Albina, PBA-5	5.3	1.0% Unichem 8161 and	250-257	234-242
					aggregate treated with lime		
002 U	Umatilla-McNary	1993	Koch, PBA-6	6.2	1% lime treatment	276-285	256-266
006 E	E. Pendleton-Emigrant Hill	1992					
	Lot 1		Columbia, PBA-3	6.3	Aggregate treated with lime	244-254	228-238
	Lot 2		Columbia, PBA-3	6.0	Aggregate treated with lime	261-270	243-252
┕	Lot 3		Albina, PBA-6	6.0	Aggregate treated with lime	270-280	252-261
006 B	Baldock Slough-S. Baker	1991	McCall, AC-20(R)	5.5	Aggregate treated with lime	278-287	257-267
041 Pı	Prine. Airport-Powell Butte	1995	Albina, PBA-6	5.2	None	268-275	252-259
004 W	Willowdale-Qualle Rd.	1995	Albina, PBA-6	5.5	None	266-275	250-257
004 M	Murphy RdLava Butte	1989					
	Lot 3		Elf Asphalt (p), AC-20	x 55	Aggregate treated with lime	260-268	243-252
	Lot 5		Asphalt Supply &	5.5	Aggregate treated with lime	263-272	243-258
	Lot 6		Chevron, CA (p)-1	5.5	Aggregate treated with lime	258-267	242-250
004 Fo	Forge RdLobert Rd.	1990	McCall, AC-20R	6.0	.5% PaveBond Special and	268-278	250-259
					aggregate treated with lime		
	Williamson RivModoc Pt.	1991	Witco, AC-20R	5.2	Aggregate treated with lime	252-260	235-244
001 Ju	Jumpoff Joe-N. Grants Pass	1991	Chevron, PBA-5	5.0	.5% PaveBond Special and	253-262	237-245
+	rolan Iumaneff Inn	1004	OL TOTAL		nydrated lime		
	Azalea-Jumpoff Joe	1994	Chevron, PBA-6	5.6	Aggregate treated with lime	268-275	252-260
001 H	5	1994					
	Lot 3 (SB)		McCall, PBA-6	6.0	Aggregate treated with lime	266-272	252-259
			Chevron, PBA-6	3.8	Aggregate treated with lime	264-271	249-257

^{*}Recommended placement temperatures from the mix design, based on asphalt viscosity.

Table 3.3: Aggregate Gradation of the Mix Design.

					Sieve	Size		
Hwy. No.	Project Name	Year Completed	25 mm (1")	19 mm (3/4")	12.5 mm (1/2")	6.25 mm (1/4")	2 mm (#10)	0.075 mm (#200)
001	Hayesville-Battle Creek	1990	100	93	67	24	13	4.6
001	W. Marquam - N. Tigard	1990	100	94	65	24	14	3.8
144	Sunset HwyPacific Hwy.	1994	100	90	63	23	11	3.0
047	Wolf CrW. Fork Dairy Cr.	1993	100	90	65	24	12	3.0
002	Corbett Intch Multnomah	1991	100	95	67	26	11	2.8
026	Mt. Hood-Long Prairie	1995	100	93	64	24	9	3.0
002	Rufus-Arlington (W. Unit)	1991	100	95	65	25	12	3.0
002	Rufus-Arlington (E. Unit)	1993	100	93	65	25	11	3.0
002	Umatilla-McNary	1993	100	92	64	24	14	3.0
006	E. Pendleton-Emigrant Hill	1992	100	95	65	26	12	3.2
006	Baldock Slough - S. Baker	1991	100	93	64	26	11	2.6
041	Prine. Airport-Powell Butte	1995	100	93	63	23	10	2.9
004	Willowdale-Qualle Rd.	1995	100	95	63	23	9	3.1
004	Murphy RdLava Butte	1989	100	98	75	25	9	3.6
004	Forge RdLobert Rd.	1990	100	93	66	25	14	3.6
004	Williamson RivModoc Pt.	1991	100	92	66	25	12	4.0
001	Jumpoff Joe-N. Grants Pass	1991	100	94	66	24	12	3.9
001	Azalea-Jumpoff Joe	1994	100	93	65	23	12	3.0
001	Halsey Intch-Lane Co. Line	1994	100	93	66	24	12	4.0

As indicated, most projects used a PBA-6 asphalt and the design asphalt content varied from 5.0 to 6.3%. Mixing and placing temperatures reported in Table 3.2 were established using the procedures described in Appendix B. Differences in the mixing and compaction temperatures between Table 3.2 and the appendix are due to differences in techniques used to plot the temperature-viscosity curves.

Table 3.4 summarizes the QC data taken during the project. For all projects, information was collected to determine:

- aggregate gradation,
- asphalt content, and
- mix moisture content.

The methods used to measure moisture content of bituminous mixtures from 1986 to the present are given in Table 3.5. As noted, several changes have occurred; however, the purpose of each change was solely to reduce the drying time of the test.

The results from the QC data indicate that:

• Mix temperatures and laydown temperatures were determined from the mix design based on the asphalt viscosity. For example, the specified ranges for mix temperature varied from 111-116°C (231-240°F) to 137-142°C (278-287°F), while laydown temperature ranges varied from 111-116°C (232-240°F) to 138-142°C (280-288°F).

Table 3.4. QC Data for Projects Surveyed

					l						
Hwy.	D	Year				Sieve	Sieve Size			Asphalt	Moisture
No.	Project Name	Completed	Value	25 mm (1")	19 mm (3/4")	12.5 mm (1/2")	6.25 mm (1/4")	2 mm (#10)	.075 mm (#200)	Content %	Content %
100	Hayesville-Battle Creek	1990	TSU	100	96	71	29	17	6	5.9	0.5
aree.	Lot 1		TST	99	85	60	19	9	2	5.1	0
	34,115 metric tons		Target	100	93	67	24	13	4.6	5.5	
	CPF = 0.989		Mean	99.94	94.43	64.72	24.96	12.57	4.28	5.50	0.35
			St. Dev.	0.29	2.68	7.26	3.65	1.53	0.54	0.27	0.04
001	W. Marquam-N. Tigard	1990	USL	100	96	71	29	18	5.8	5.6	0.7
	Lot 1		LSL	99	85	60	19	10	1.8	4.8	0
1 258	29,945 metric tons		Target	100	94	65	24	14	3.8	5.2	
	CPF = 1.014		Mean	99.90	92.08	65.14	23.43	12.30	4.49	5.26	0.43
			St. Dev.	0.35	2.27	3.83	2.68	1.95	0.83	0.22	0.11
144	Sunset Hwy Pacific Hwy.	1994	TSU	100	96	71	28	15	S	5.4	0.7
	Lot 1		LSL	99	85	60	18	7		5	0
	2,177 metric tons		Target	100	90	63	23	Ξ	ယ	5.6	
	CPF = 1.018		Mean	99.67	87.33	64	18.67	7.33	2.3	5.28	0.6
			St. Dev.	0.58	3.51	4.36	2.08	0.58	0.46	0.04	0.09
144	Sunset HwyPacific Hwy.	1994	USL	100	96	71	28	15	5	5.7	0.7
1 942	Lot 2		LSL	99	85	60	18	7	_	5.3	0
9 99	4,058 metric tons		Target	100	90	63	23	11	ယ	5.6	8
	CPF = 1.024		Mean	99.5	89.33	68.17	23.33	9.33	3.15	5.49	0.60
_			St. Dev.	0.548	1.86	4.26	3.93	1.75	0.50	0.02	0.05
144	Sunset HwyPacific Hwy.	1994	USL	100	96	71	28	15	5	5.4	0.7
	Lot 3		LSL	99	85	60	18	7	_	5	0
	28,6/3 metric tons		Target	100	90	63	23	11	3.0	5.6	
	CFF = 1.022		Mean	99.93	92.14	69.66	22.76	8.79	2.93	5.20	0.57
_			St. Dev.	0.26	2.56	3.67	1.90	0.86	0.40	0.08	0.10
047	Wolf CrW. Fork Dairy Cr.	1993	USL	100	96	71	30	17	5	6.5	0.8
	Lot I		LSL	99	85	60	18	7	-	5.5	0
	25, /42 metric tons		Target	100	90	65	24	12	3.0	6.0	
	CFF = 0.989		Mean	99.98	90.86	66.32	24.95	12.89	2.73	6.00	0.66
_			St. Dev.	0.13	1.78	3.24	2.74	1.77	0.37	0.39	0.17
002	Corbett Intch-Multnomah	1991	USL	100	96	71	31	15	4.8	5.9	0.7
4 82	Lot I		LSL	99	85	60	21	7	0.8	5.1	0
0 281	54,022 metric tons		Target	100	95	67	26	Ξ	2.8	5.5	
	CFF = 1.0		Mean	100.00	95.03	67.72	24.03	9.93	2.31	5.42	0.89
			St. Dev.	0.00	1.47	3.14	2.14	1.23	0.46	0.24	0.12

Table 3.4: QC Data for Projects Surveyed. (continued)

Hwy.		Year				Sie	Sieve Size			Asphalt	Moisture
No.	Project Name	Completed	Value	25 mm (1")	19 mm (3/4")	12.5 mm (1/2")	6.25 mm (1/4")	2 mm (#10)	.075 mm (#200)	Content %	Content %
026	Mt. Hood-Long Prairie	1995	USL	100	96	71	30	14	5	6.2	0.8
	Lot 4		LSL	99	85	60	18	4	_	5.8	0
	11,225 metric tons		Target	100	93	64	24	9	ယ	6	
	CPF = 0.9369		Mean	100	92.55	62.27	28	11.45	2.55	5.97	1.17
			St. Dev.	0.00	1.81	2.1	3.38	1.37	0.88	0.10	0.28
002	Rufus-Arlington (W. Unit)	1993	USL	100	96	71	30	15	S	6	0.7
	Lot 1		LSL	99	85	60	20	7	1	5.6	0
	68,241 metric tons		Target	100	93	65	25	=	3.0	5.8	
	CPF = 1.026		Mean	99.97	91.67	64.83	24.53	10.59	2.21	5.78	0.52
			St. Dev.	0.18	1.87	3.55	2.39	1.50	0.45	0.05	0.11
002	Rufus-Arlington (E. Unit)	1991	USL	0	96	71	30	16	5	5.7	0.6
	Lot I		LSL	99	85	60	20	8	-	4.9	0
	39,845 metric tons		Target	100	95	65	25	12	3.0	5.3	
	$CPF \equiv 1.000$		Mean	100.00	94.69	66.99	25.87	12.64	3.04		0.39
			St. Dev.	0.00	2.20	4.39	3.19	2.24	0.55		0.19
002	Umatilla-McNary	1993	USL	100	96	71	30	19	5	6.7	0.8
	Lot 1		LSL	99	85	60	18	9	-	5.7	0
	9,176 metric tons		Target	100	92	64	24	14	3.0	6.2	
	CFF = 1.025		Mean	100.00	92.95	63.11	26.68	14.05	2.41	6.29	0.35
			St. Dev.	0.00	1.51	2.60	1.73	0.85	0.35	0.23	0.09
006	E. Pendleton-Emigrant Hill	1992	USL	100	96	71	31	16	5.2	6.8	0.8
	Lot I		LSL	99	85	60	21	8	1.2	5.8	0
	CDE = 1 CO.1		Target	100	94	65	25	12	3.1	6	
	CFF = 1.024		Mean	100	95.57	69.65	28.22	13.17	2.71	6.30	0.32
			St. Dev.	0.00	1.08	2.48	1.86	0.94	0.56	0.18	0.10
006	E. Pendleton-Emigrant Hill	1992	USL	100	96	71	30	16	5.1	6.6	0.8
	Lot 2A		LSL	99	85	60	20	8	1.1	5.6	0
	CDE = 1 001		Target	100	94	65	25	12	3.1	6	
	CFF = 1.001		Mean	100	96.5	67.33	28.17	12.33	2.34	6.46	0.39
			St. Dev.	0.00	-	3.82	1.95	0.65	0.27	0.23	0.10
006	E. Pendleton-Emigrant Hill	1992	USL	100	96	71	30	16	5.1	6.6	0.8
	Lot 2B		LSL	99	85	60	20	8	Ξ	5.6	0
	16,090 Helric tons		Target	100	95	65	26	12	3.2	5.6	
	C11 - 1.015		Mean	99.98	95.28	64.28	27.33	11.35	2.69	6.46	0.22
			St. Dev.	0.16	1.36	4.12	1.93	1.33	.60	0.24	0.07

Table 3.4: QC Data for Projects Surveyed. (continued)

			,								
Hwy.	Designat Notes	Year				Sie	Sieve Size			Asphalt	Moisture
No.	Project Name	Completed	Value	25 mm (1")	19 mm (3/4")	12.5 mm (1/2")	6.25 mm (1/4")	2 mm (#10)	.075 mm	Content %	Content %
006	E. Pendleton-Emigrant Hill	1992	USL	100	96	71	30	16	5.1	6.8	0.8
	Lot 3		LSL	99	85	60	20	8	Ξ	5.8	0.8
	1,886 metric tons		Target	100	94	65	25	12	3.1	6	
	CPF = 1.028		Mean	100	95	65	28	Ξ	2.45	6.4	0.22
			St. Dev.	0.00	1.41	4.08	0.82	0	0.48	0.22	0.07
006	Baldock Slough-S. Baker	1991	TSU	100	96	71	31	15	4.6	5.9	0.5
	Lot 1		LSL	99	85	60	21	7	0.6	5.1	0
	41,356 metric tons		Target	100	93	64	26	=	2.6	5.5	
	CPF = 1.014		Mean	99.98	92.76	66.86	29.21	12.22	2.75	5.45	0.26
			St. Dev.	0.15	2.27	3.07	2.01	0.93	0.19	0.20	0.05
006	Baldock Slough-S. Baker	1991	USL	100	96	71	31	15	4.6	5.9	0.5
	Lot 2		LSL	99	85	60	21	7	0.6	5.1	0
	1,940 metric tons		Target	100	93	64	26	Ξ	2.6	5.5	
	CPF = 1.027		Mean	100	89.4	63.4	28.2	12.4	2.98	5.46	0.22
			St. Dev.	0.00	2.97	4.62	1.79	1.14	0.16	0.11	0.01
041	Prineville Airport-Powell	1995	TSU	1E+09	96	71	28	14	4.9	5.4	0.8
	Butte		LSL	99	85	55	18	6	1	5	0
	LOT I		Target	100	93	63	23	10	2.9	5.2	
	18,089 metric tons		Mean	100.00	92.60	63.55	23.05	10.50	2.17	5.20	0.76
	CFF - 1.010		St. Dev.	0.00	1.23	2.50	0.76	0.83	0.27	0.03	0.13
004	Willowdale-Qualle Rd.	1995	USL	100	96	71	28	13	5.1	5.5	0.8
	Lot 1		LSL	99	85	55	17	5	::	5.1	0
	12,559 metric tons		Target	100	95	63	23	9	3.1	5.5	
	CIF = 0.543		Mean	100.00	93.93	64.50	25.71	10.21	3.54	5.22	0.86
			St. Dev.	0.00	1.07	3.50	1.64	0.89	0.38	0.04	0.08
004	Murphy RdLava Butte	1989	USL	100	100	80	30	14	5.6	6	0.6
	5 717		LSL	99	95	66	18	6	1.6	5	0
	3, / I / metric tons		Target	100	98	75	25	10	3.6	5.5	
	C11 - 1.020		Mean	100	97.82	77.45	24.18	9	3.86	5.53	0.43
201			St. Dev.	0.00	1.72	4.11	1.54	1.61	1.24	0.30	0.13
004	Murphy RdLava Butte	1989	USL	100	100	80	30	13	5.6	5.7	0.6
	Lot 4		LSL	99	95	66	18	5	1.6	4.7	0
	0.002 medicions 0.002		Target	100	98	75	25	9	3.6	5.2	
	(A1 0.00)		Mean	100.00	97.83	74.58	22.42	8.08	3.24	5.36	0.46
			St. Dev.	0.00	1.03	3.06	3.06	1.24	0.62	0.43	0.12

Table 3.4: QC Data for Projects Surveyed. (continued)

				1							
Hwy.		Year	•			Sie	Sieve Size			Asphalt	Moisture
No.	Project Name	Completed	Value	25 mm (1")	19 mm (3/4")	12.5 mm (1/2")	6.25 mm (1/4")	2 mm (#10)	.075 mm	Content %	Content %
004	Murphy RdLava Butte	1989	USL	100	100	80	30	14	5.5	6	0.6
	Lot 5		LSL	99	95	66	18	6	1.5	S	0
	5,076 metric tons		Target	100	98	75	25	10	3.5	5.5	
	CPF = 1.014		Mean	99.91	97.91	75.09	21.73	8.18	3.21	5.31	0.39
			St. Dev.	0.30	1.22	2.43	1.90	0.60	0.49	0.32	0.11
004	Murphy RdLava Butte	1989	USL	100	100	80	30	14	5.5	6	0.6
	Lot 6		LSL	99	95	66	18	6	1.5	S	0
	1,491 metric tons		Target	100	98	75	25	· 10	3.5	5.5	
	CPF = 1.025		Mean	100	97	74	21	8.33	3.4	5.47	0.45
			St. Dev.	0.00	2	7.21	1	0.58	0.27	0.40	0.11
004	Forge RdLobert Rd.	1990	TSU	100	96	71	30	18	5.6	6.5	0.6
	Lot 1		LSL	99	85	60	20	10	1.6	5.5	0
	21,412 metric tons		Target	100	93	66	25	14	3.6	6.0	
	$CPH \equiv 1.001$		Mean	99.94	92.29	61.53	26.94	13.18	2.91	5.86	0.16
			St. Dev.	0.24	3.26	4.46	2.16	1.51	0.60	0.26	0.05
004	Williamson RivModoc Pt.	1991	USL	100	96	71	30	16	6	5.7	0.8
	Lot 1		LSL	99	85	60	20	8	2	4.7	0
	4,965 metric tons		Target	100	92	66	25	12	4.0	5.2	
	CFF = 1.023		Mean	100.00	93.91	68.91	26.00	11.36	2.60	5.11	0.36
			St. Dev.	0.00	1.14	5.17	0.63	0.67	0.53	0.12	0.05
011	Jumpoff Joe-N. Grants Pass	1991	USL	100	96	71	29	16	5.9	5.4	0.8
	Lot 1		LSL	99	85	60	19	8	1.9	4.6	0
	14,8/4 metric tons		Target	100	94	66	24	12	3.9	5.0	
	CFF = 1.000		Mean	100.00	93.12	65.41	24.77	11.47	3.35	4.95	0.25
			St. Dev.	0.00	1.69	3.61	3.20	1.68	0.52	0.16	0.05
110	Jumpoff Joe-N. Grants Pass	1991	USL	100	96	71	29	16	5.9	5.4	0.8
	Lot 2		LSL	99	85	60	19	8	1.9	4.6	0
	40,808 metric tons		Target	100	94	66	24	12	3.9	5	
	Cf F = 1:021		Mean	100	93.12	65.41	24.77	11.47	3.35	4.95	0.25
3			St. Dev.	0.00	1.69	3.61	3.20	1.68	0.52	0.16	0.05
100	Azalea-Jumpott Joe	1994	USL	100	96	71	25	15	5	5.2	0.7
	Lot I		LSL	99	85	60	17	7	200	4.8	0
	0.141 medic to its $CDE = 0.0413$		larget	100	94	66	21	П	3	5	
	C11 0:7717		Mean	100	93.43	61.29	26.14	11.57	2.23	4.87	0.21
			St. Dev.	0.00	1.72	1.80	1.68	0.53	0.23	0.15	0.04

Table 3.4: QC Data for Projects Surveyed. (continued)

Hwy	No.		001 A	ı	7.			001 H	· [2 2		_	001 H	, F	ب ر		L
	rroject Name		Azalea-Jumpoff Joe	Lot 2	72,291 metric tons	CPF = 1.0191		Halsey Intch-Lane Co. Line	Lot 3	23,154 metric tons	CFF = 1.00/4		Halsey Intch-Lane Co. Line	L014	34,324 metric tons	CFF = 1.008/	
Year	Completed	,	1994					1994					1994				
W7-1	value		USL	LSL	Target	Mean	St. Dev.	USL	LSL	Target	Mean	St. Dev.	USL	LSL	Target	Mean	St. Dev.
	25 mm	(1")	100	99	100	100	0.00	100	99	100	100	0.00	100	99	100	100	0.00
	19 mm	(3/4")	96	85	93	94.10	1.18	96	85	93	91.08	2.21	96	85	93	90.92	2.19
Siev	12.5 mm	(1/2")	71	60	65	62.58	3.23	71	00	99	64.75	4.28	71	60	66	64.21	3.14
Sieve Size	6.25 mm	(1/4")	28	18	23	25.41	2.59	29	19	24	25.46	3.5	29	19	24	24.01	2.99
	2 mm	(#10)	16	∞	12	11.68	1.57	16	∞	12	11.63	1.86	16	8	12	10.37	1.33
	.075 mm	(#200)	Ŋ	1	3.0	2.26	0.44	6	2	4	4.10	0.72	6	2	4	3.56	0.56
Asphalt	Content	%	5.8	5.4	5.6	5.56	0.09	6.4	5.6	6	I	I)	6.2	5.4	5.8		ĺ
Moisture	Content	%	0.7	0		0.29	0.06	0.7	0		0.4	0.13	0.7	0		0.55	0.12

Table 3.5: Moisture Content Measurements – ODOT.

- ODOT has changed its method of measuring the moisture content of bituminous mixtures three times since 1986. Prior to 1986 it is believed that AASHTO T-255 test method was used. T-255 dries the samples in a conventional oven at 230°F until a constant weight is reached. A total of 15-20 hours was often needed to obtain a constant weight.
- In 1986 ODOT released its first lab manual. The manual listed two methods for determining the moisture content of bituminous mixtures. The first method, OSHD Test Method 311(O)-86 is just AASHTO T-255 with an ODOT test number. The second method, OSHD Test Method 311(M)-86, used a microwave oven to heat the bituminous mixture to drive out the moisture. Although the microwave method was included in the lab manual, the conventional oven method was used the majority of the time.
- In 1991 OSHD TM311(M)-91 was adapted into the field test manual. This procedure increased the temperature in the microwave from 205°F to 350°F. With the new microwave method, field personnel could get the moisture content in one or two hours, rather than the 15 to 20 hours needed for the conventional oven. The oven drying method was used as a check the first time a mix was tested using the microwave drying method.
- A revision of the field operating procedures for AASHTO T-255 was issued in 1993. This revision mainly consolidated the two protocols into one test protocol without any change to the procedures.
- The last change in AASHTO T-255 occurred in 1996. It added a 90-minute drying time in a forced air oven. Not only did this shorten the drying time of the sample but, unlike the microwave method, the technician is not required to monitor the drying of the sample. Although this procedure was not added to the procedure until 1996, it was actually implemented in spring 1994.
 - The target aggregate gradation values and specification limits of the mix designs varied in the following manner:

	Target	Value	Specific	ation Range
	Highest	Lowest	Highest	Lowest
1" (25 mm)	100	100	99-100	99-100
³ / ₄ " (19 mm)	98	90	95-100	86-96
½" (12.5 mm)	75	63	66-80	55-71
¹ / ₄ " (6.25 mm)	26	23	21-31	17-28
#10 (2 mm)	14	9	10-18	5-13
#200 (0.075 mm)	4.6	2.6	2-6	.6-4.6

• In every case, the sample means of the QC data fell within the specification limits, except moisture content. However, this information can be misleading since many of the individual values were outside specification as discussed later in the report.

3.3 SURVEY PROCEDURES

The surveys were conducted on June 27-28, 1994, and July 24-25, 1995. All projects were evaluated for the following:

1) Overall condition. The type and extent of distress (if any) were noted. Photos were also taken of the pavements during the survey.

2) Rut depth. This was measured for each project using the standard 1.8 m (5 ft) rut bar furnished by ODOT.

The survey was also used to identify the projects which needed to be cored. Tests on the cores will be used to identify the cause of the observed distress (see Chapter 4 for tests performed and test results).

3.4 SURVEY RESULTS

<u>Hayesville-Battle Creek</u>. This project, constructed in 1990, consists of 50 mm (2 inches) of F-mix over an unstable C-mix. The condition after five years was rated as good. Rut depths up to 13 mm (1/2 inch) were recorded. Most of the rutting was attributed to the unstable C mix or to studded tires (Figure 3.1).

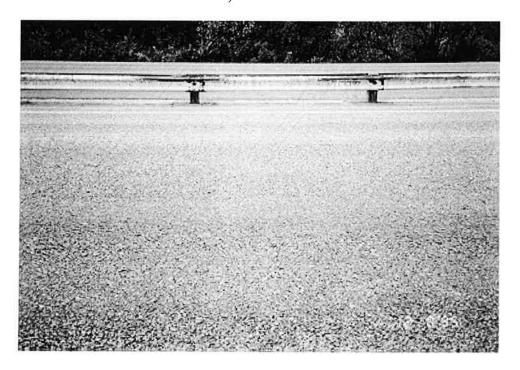
<u>W. Marquam-N. Tigard</u>. This project, constructed in 1990, is a 50 mm (2 inch) overlay over an existing unstable dense-graded mix that had been profiled. The condition after five years was rated as good (Figure 3.2).

Sunset Highway-Pacific Highway. This project, constructed in 1994, was a 50 mm (2 inch) overlay over an existing dense-graded mix that had been profiled. The 1995 survey indicated the pavement was in good condition, with no measurable rutting. There were some fat spots (Figure 3.3) and the pavement surface looked in need of a fog seal.

Wolf Creek-W. Fork Dairy Creek. This project, constructed in 1993, had fat spots immediately after construction. The worst areas were replaced, but fat spots still persist and the extent is growing (Figure 3.4). Rut depths of up to 9 mm (3/8 inch) were measured.

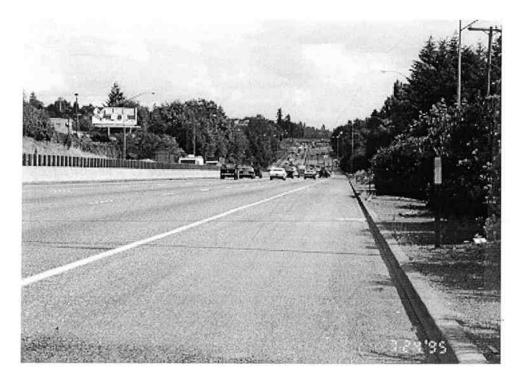
Corbett Interchange-Multnomah. This project, constructed in 1991, was in good condition (Figure 3.5) with no measurable rutting. This was despite high mix moisture content measured during construction (Table 3.4).

Mt. Hood-Long Prairie. This project, constructed in 1995, was in excellent condition (Figure 3.6). There were no obvious problems, despite reports of high mix moisture (Table 3.4).


<u>Rufus-Arlington (West Unit)</u>. This project, constructed in 1992, was in good condition with no rutting (Figure 3.7).

Rufus-Arlington (East Unit). This project, constructed in 1991, was also in good condition. Rut depths of 6 mm (1/4 inch) were measured in the truck lane. Also, there were some stains coming from the longitudinal joint in places along the project (Figure 3.8). High mix moisture was reported early on the project.

<u>Umatilla-McNary</u>. This project, constructed in 1993, consisted of 50 mm (2 inches) of F-mix over 50 mm (2 inches) of B-mix. Immediately after construction, it was reported to have fat spots with some rutting. Most of the fat spots are at the intersection of US 395. The remainder of the project is in good condition, with some fat spots showing (Figure 3.9). The rut depth was measured to be 3 to 6 mm (1/8 to 1/4 inch).


a) Overview

b) Closeup

Figure 3.1: Haysville-Battle Creek, MP 258

29



a) Overview

b) Closeup

Figure 3.2: W. Marquam-N. Tigard, MP 199.5

a) Overview

b) Closeup

Figure 3.3: Sunset Highway-Pacific Highway, 99W Interchange

a) Overview

b) Closeup

Figure 3.4: Wolf Creek-W. Fork Dairy, MP 38

a) Overview

b) Closeup

Figure 3.5: Corbett Interchange-Multnomah, MP 25

a) Overview

b) Closeup

Figure 3.6: Mt. Hood-Long Prairie at Miller Road

a) Overview

b) Closeup

Figure 3.7: Rufus-Arlington (West Unit), MP 120.5

a) Overview, MP 131

b) Staining at Joint, MP 134.5

Figure 3.8: Rufus-Arlington (East Unit)

a) Overview

b) Closeup of Fat Spots

Figure 3.9: Umatilla-McNary, MP 185

East Pendleton-Emigrant Hill. This project, constructed in 1992, was in very good condition (Figure 3.10). It consists of 100 mm (4 inches) of F-mix over an existing dense-graded mix that had been profiled. The measured rut depths were less than 6 mm (1/4 inch).

Baldock Slough-S. Baker. This project, constructed in 1991, was one of two which reportedly had moisture sensitivity problems. Localized fat spots/raveling were noted near MP 299. The measured rut depth was less than 6 mm (1/4 inch).

<u>Prineville Airport-Powell Butte</u>. This project, constructed in 1995, consists of 50 mm (2 inches) of F-mix over 100 mm (4 inches) of B-mix. It was in very good condition, with no measurable rutting or fat spots (Figure 3.12).

Willowdale-Qualle Rd. This project, constructed in 1995, consists of 50 mm (2 inches) of F-mix over 75 mm (3 inches) of B-mix. This project was in good condition. It was reported to have high mix moisture during construction (Table 3.4).

Murphy Rd.-Lava Butte. This project, constructed in 1989, was in good condition. There was some snow plow damage and rut depths were measured to be less than 6 mm (1/4 inch) (Figure 3.13). This was a test section with several different binder types.

<u>Forge Rd.-Lobert Road</u>. This project constructed in 1990, is experiencing spots of raveling. The raveling occurred in fat spots (Figure 3.14).

Williamson River-Modoc Pt. This project, constructed in 1991, was in good condition with some fat spots (Figure 3.15). The fat spots reportedly occurred during construction.


<u>Jumpoff Joe-N. Grants Pass</u>. This project, constructed in 1991, was in good condition with less than a 3 mm (1/8 inch) rut depth (Figure 3.16). It was raining during the survey, so the splash and spray benefits could be noted (Figure 3.17).

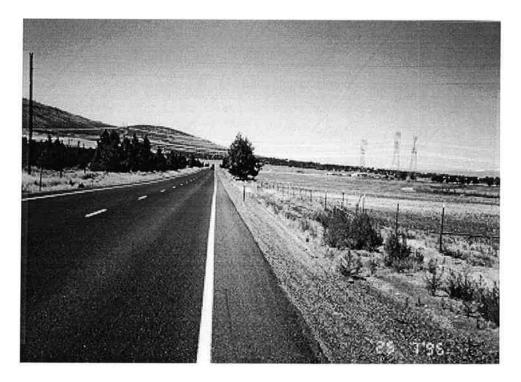
Azalea-Jumpoff Joe. This project, constructed in 1994, was in very good condition (Figure 3.18). Shortly after this field survey was conducted, this project exhibited low skid numbers (two years after construction). Sections on the curves were milled to correct the problem.

<u>Halsey Interchange-Lane County Line</u>. This project, constructed in 1994, consists of 50 mm (2 inches) of F-mix over 50-225 mm (2-9 inches) of B-mix. There are fat spots, and some pushing and shoving has occurred (Figure 3.19).

a) Overview

b) Closeup

Figure 3.10: E. Pendleton-Emigrant Hill, MP 214.5

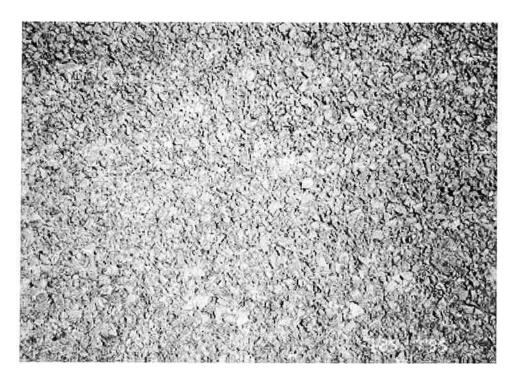


a) Overview

b) Localized Raveling

Figure 3.11: Baldock Slough-S. Baker, MP 299

a) Overview



b) Closeup

Figure 3.12: Prineville Airport-Powell Butte Rd., MP 12.5

a) Overview

b) Closeup

Figure 3.13: Murphy Rd.-Lava Butte, MP 148.5

a) Overview, 1994

b) Overview, 1996

Figure 3.14: Forge Rd.-Lobert Rd., MP 245

a) Overview

b) Closeup

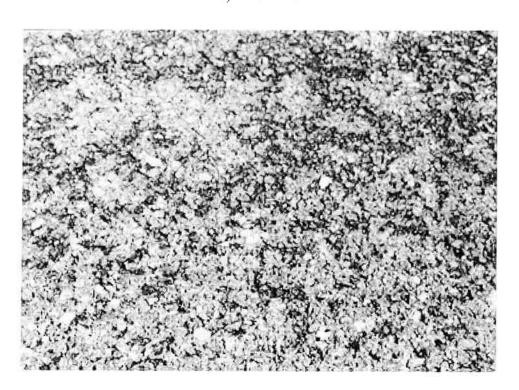
Figure 3.15: Williamson River-Modoc Point, MP 256

a) Overview

b) Closeup

Figure 3.16: Jumpoff Joe-N. Grants Pass, MP 61

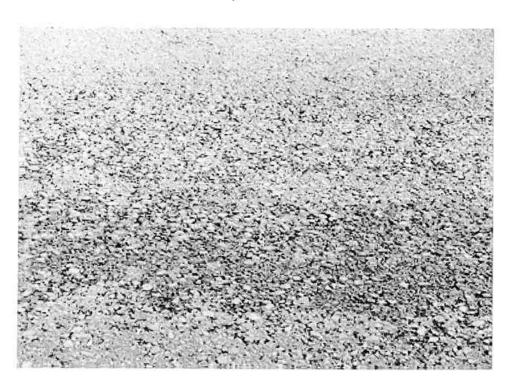
a) Overview



b) Closeup

Figure 3.17: Porous Mixes in Rainy Conditions

a) Overview



b) Closeup

Figure 3.18: Azalea-Jumpoff Joe, MP 79

a) Overview

b) Closeup

Figure 3.19: Halsey Interchange-Lane County Line, MP 202

3.5 SUMMARY

Table 3.6 summarizes project performance for the projects surveyed. Of the 19 projects surveyed, 4 projects were rated to be in fair condition, 11 projects were rated to be in good condition, 3 projects were found to be in very good condition, and 1 project was rated to be in excellent condition. Thus, overall performance of F-mix projects in Oregon was found to be positive.

Eight of the 19 projects exhibited measurable rut depths. The highest rut depths were found on the Hayesville-Battle Creek project at up to 13 mm, followed by the Wolf Creek-W. Fork Dairy Creek project at up to 9 mm. The remaining projects that exhibited rutting were all under 6 mm. This could be considered normal rutting in Oregon due to the high use of studded tires. In addition, two projects were noted to have raveling problems and six projects exhibited fat spots (two were localized). Some pushing and shoving was also noted on the Halsey Interchange-Lane County Line project.

Given these performance issues, a test plan was recommended by OSU to include the core requirements presented in Table 3.7. This test plan was approved by the project's Technical Advisory Committee on October 10, 1995, and is documented more thoroughly in the next chapter.

Table 3.6. Project Performance (1995).

Hwy. No.	Project Name	Year Constructed	Condition	Rut Depth	Comments
001	Hayesville-Battle Creek	1990	good	Up to 13 mm	
001	W. Marquam-N. Tigard	1990	good		
144	Sunset HwyPacific Hwy.	1994	Good		fat spots, needed fog seal
047	Wolf CrW. Fork Dairy Cr.	1993	fair	Up to 9 mm	fat spots due to too much asphalt and high moisture content
002	Corbett IntchMultnomah	1991	good	_	despite high moisture
026	Mt. Hood-Long Prairie	1995	excellent		despite high moisture
002	Rufus-Arlington (W. Unit)	1993	good		
002	Rufus-Arlington (E. Unit)	1991	good	< 6 mm	stains
002	Umatilla-McNary	1993	good	3-6 mm	localized fat spots
006	E. Pendleton-Emigrant Hill	1992	very good	< 6 mm	
006	Baldock Slough-S. Baker	1991	fair to good	< 6 mm	localized fat spots/raveling
041	Prine. Airport-Powell Butte	1995	very good		
004	Willowdale-Qualle Rd.	1995	good	_	
004	Murphy RdLava Butte	1989	good	< 6 mm	some snow plow damage; test section – several binder types
004	Forge RdLobert Rd.	1990	fair to good		raveling
004	Williamson RivModoc Pt.	1991	good	-	some fat spots
001	Jumpoff Joe-N. Grants Pass	1991	good	< 3 mm	
001	Azalea-Jumpoff Joe	1994	very good	_	sections milled on curves
001	Halsey IntchLane Co. Line	1994	fair	-	fat spots, pushing and shoving

Table 3.7. Core Requirements for Test Plan.

Project	Sampling Areas
Wolf Creek-W. Fork Dairy Cr.	in and out of fat spots
Rufus-Arlington (East Unit)	at longitudinal joint to determine cause of stains (stains could be from CIR)
Baldock Slough-S. Baker	in and out of raveled areas
Forge Road-Lobert Road	in and out of raveled areas
Azalea-Jumpoff Joe	splash and spray benefits were noted only in parts of the project
Halsey Interchange-Lane County Line	in and out of fat spots (pushing and shoving)

4.0 LABORATORY EVALUATIONS

The field survey results indicated that the problems in F-mixes include: 1) fat spots, 2) raveling, and 3) rutting. This chapter presents the test program work to evaluate the causes of pavement distress. The location of the cores from the six projects evaluated is given in Table 4.1.

Table 4.1: Projects Sampled

Project	Contractor	Sampling areas	Post Location	Location*
Wolf Creek -	Wildish	in and out of fat spots	east bound	Rt. Ln., Rt. of SS
W. Fork Dairy	11140	The second secon	M.P. 37.6	3.0 m (OWT)
Creek**				3.25 m (OWT)
		surface fat spots	east bound	Rt. Ln., Rt. of SS
			M.P. 38.38	2.2 m (BWT)
				2.6 m (OWT)
				2.8 m (OWT)
			west bound	Rt. Ln., Rt. of SS
			M.P. 42.02	2.0 m (BWT)
				2.1 m (BWT)
				3.2 m (OWT)
				3.4 m (OWT)
			west bound	Rt. Ln., Rt. of SS
			M.P. 45.2	1.6 m (BWT)
				1.7 m (BWT)
				2.5 m (OWT)
				2.7 m (OWT)
Rufus - Arlington**	Babler Bros.	at longitudinal point to	east bound	Rt. Ln., Rt. of SS
(east unit)		determine cause of	M.P. 126.5	3.2 m (OWT)
		stress		3.0 m (OWT)
			east bound	Left Ln., Left of SS
			M.P. 133	1.7 m (BWT)
				1.9 m (BWT)
				Rt. Ln., Rt. of SS
				2.5 m (OWT)
				2.7 m (OWT)
			east bound	Left Ln., Left of SS
			M.P. 135.15	3.1 m (OWT)
				3.2 m (OWT)
				Rt. Ln., Rt. of SS
				2.8 m (OWT)
				3.1 m (OWT)

^{*}Between wheel track (BWT) is for 1.5 to 2.3 m from skip strip (SS) line. Outer wheel track (OWT) is for distances greater than 2.4 m from SS line.

^{**}BWT and OWT determinations for Wolf Creek and Rufus Arlington are estimated from information provided.

Table 4.1: Projects Sampled (continued)

Project	Contractor	Sampling areas	Post Location	Location*
Baldock Slough - S. Baker	Babler Bros.	in and out of raveled areas	east bound M.P. 299.38	Outside Ln., Rt. of SS 2.9 m (BWT) 2.9 m (BWT) 3.3 m (OWT)
			east bound M.P. 299.22	Outside Ln., Rt. of SS 3.1 m (OWT) 3.0 m (OWT) 3.0 m (OWT) 3.1 m (OWT) 1.7 m (BWT) 1.9 m (BWT) 2.0 m (BWT)
Forge Rd Lobert Rd.	J.C. Compton	in and out of raveled areas	north bound M.P. 246.18	Rt. Ln., Rt. of SS 2.5 m (OWT) 2.8 m (OWT) 2.7 m (OWT) 2.7 m (OWT) 2.0 m (OWT) 2.0 m (OWT) 1.8 m (BWT) 1.8 m (BWT)
			south bound M.P. 244.14	Rt. Ln., Rt. of CL 5.9 m (OWT) 5.9 m (OWT) 5.9 m (OWT) 5.9 m (OWT)
Azalea - Jumpoff Joe (south end)	Kiewit	splash and spray benefits?	south bound M.P. 78.05	Rt. Ln., Rt. of SS 2.7 m (OWT) 2.8 m (OWT) 2.8 m (OWT) 2.9 m (OWT) 1.8 m (BWT) 1.8 m (BWT) 1.8 m (BWT) 1.8 m (BWT)
Halsey Interchg Lane Co. Line	Wildish	in and out of shoving areas	south bound M.P. 212.98	Rt. Ln., Rt. of SS 2.9 m (OWT) 2.9 m (OWT) 2.0 m (BWT) 2.0 m (BWT)

^{*}Between wheel track (BWT) is for 1.5 to 2.3 m from skip strip (SS) line. Outer wheel track (OWT) is for distances greater than 2.4 m from SS line.

^{**}BWT and OWT determinations for Wolf Creek and Rufus Arlington are estimated from information provided.

4.1 TEST PROGRAM

The test program is displayed in Figure 4.1. Depending on the type of distress, the testing plan varied as shown in Table 4.2. Oregon DOT obtained the cores in November/ March 1995. The testing took place during the spring of 1996.

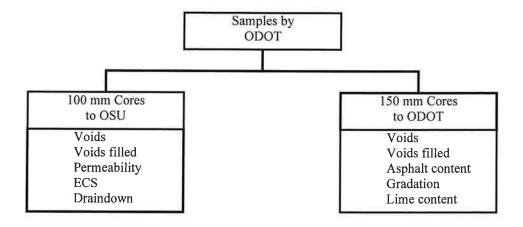


Figure 4.1: Laboratory Test Program

Table 4.2: Test Program

Type of Distress	Samples*	Type of Test
Fat Spots/Shoving	2–150 mm diameter/site (ODOT)	Asphalt content Gradation Voids Voids filled
	2-100 mm diameter/site (OSU)	ECS
Raveling	2–150 mm diameter/site	Asphalt content Gradation Voids Voids filled Lime content
	2-100 mm diameter/site	ECS Boiling water
Splash and Spray	4–150 mm diameter cores	Asphalt content Gradation Voids Voids filled
	4–100 mm diameter cores	Voids Permeability

^{*2} to 3 sites/project

4.1.1 ODOT Tests (150 mm cores)

The Operations Support Section of ODOT was responsible for performing the tests on the 150 mm (6-inch) diameter cores. The initial testing was done to investigate the volumetric properties of each core; it was followed by an extraction procedure to examine the compliance to the mix design. The following protocols were used:

- 1) Volumetric. The volumetric test accomplished by ODOT consisted of the maximum specific gravity by AASHTO T-209; the saturated surface dry bulk specific gravity by AASHTO T-166; the geometric bulk specific gravity by ODOT TM 307-95; and air void calculation by AASHTO test method T-269. Using the data from the job mix formula sheets and the extraction reports, OSU calculated the percentage of voids in the mineral aggregate (VMA) and the percentage of voids filled with asphalt (VFA).
- 2) <u>Bituminous Extraction</u>. The bituminous extraction method used followed the ODOT test method TM 309-95 to separate the binder and aggregate. The asphalt content was determined according to the procedures in ODOT TM 309-95. The aggregate gradation was measured using sieve analysis according to AASHTO test methods T-11 and T-27.

4.1.2 OSU Tests (100 mm cores)

The 100 mm diameter cores from each project were delivered to Oregon State University for testing. Initial testing was performed to evaluate the volumetric properties of the cores. Final testing was done on two samples from each project in the Environmental Conditioning System (ECS) to examine any moisture sensitivity in the mix. The protocols used included the following:

- 1) Volumetric. The volumetric testing accomplished at OSU consisted of the parafilm bulk specific gravity test method from Chevron Research Company (Del Valle, 1985). The air void content calculation was performed according to ASTM test method D3203. The average maximum specific gravity was obtained from the extraction data from ODOT. At each core location, an average maximum specific gravity was calculated and used in the air void calculation for the 100 mm cores from the same milepost. Calculation of the VMA and VFA for the OSU cores used aggregate properties from the job mix formula sheet.
- 2) Environmental Conditioning System. One sample from each project was cycled through the ECS according to SHRP M-006. A slight modification was made to the procedure in that the samples did not receive any repeated loading. Previous studies (Kliewer et al., 1995) have shown that the open-graded mixes deform excessively under loading. The ECS testing procedure tracks the change in the modulus of the sample as it is cycled through the testing. If the modulus ratio of the sample falls below 75%, the sample is considered susceptible to moisture damage. The sample is split in half at the end of the ECS testing and a visual strip rating is assigned to the core.

4.2 TEST RESULTS

This section presents the results of the six projects used in the laboratory investigation of the porous pavements. The asphalt contents for the projects are summarized in Table 4.3. Results for each project are described, including results from both ODOT and OSU laboratory testing. For each project, the ODOT volumetric test results are reported followed by the bituminous extraction results. The OSU lab results include the volumetric data followed by the permeability, and then conclude with the ECS test results. The detailed results are presented in Appendix C.

When comparing the volumetrics of the cores tested in the ODOT lab with the volumetrics from the OSU lab, there are differences in the resulting values. These differences can be explained by the methods used to measure the volumetrics of the cores. The ODOT lab used a geometric method, while OSU used a parafilm method. Although both ODOT and OSU volumetric results are reported, all references to volumetrics in later chapters are based upon OSU results only.

It should be pointed out that the number of samples taken (and tested) varied from project to project. This was due primarily to differences in the performance found along any given project.

Table 4.3: Summary of Asphalt Contents for All Projects Sampled

Project	Target (%)	Upper Limit (%)	Lower Limit (%)	Average (%)	Median (%)	Minimum (%)	Maximum (%)	Met Spec/ Total
Wolf CrW. Fork Dairy Cr.	6.0	6.5 (5 over)	5.5 (2 under)	6.9	6.1	5.1	13.1	5/12
Rufus-Arlington	5.3	5.7 (6 over)	4.9 (1 under)	5.5	5.8	4.3	6.3	2/9
Baldock Slough- S. Baker	5.5	5.9	5.1	5.6	5.7	5.4	5.8	3/3
Forge RdLobert Rd.	6.0	6.5	5.5 (5 under)	5.0	4.9	4.7	5.8	1/6
Azalea-Jumpoff Joe*	5.6	5.8	5.4 (8 under)	5.1	5.0	4.6	5.3	0/8
Halsey Intch Lane Co. Line	5.8	6.2	5.4 (1 under)	5.7	5.7	5.0	6.1	10/11

^{*}Some areas on this project were replaced, other areas received a fog seal.

4.2.1 Wolf Creek-W. Fork Dairy Creek

4.2.1.1 ODOT Tests

Extraction results showed the individual gradation of the 12 samples all exceeded the upper broadband limit significantly at a minimum of one gradation control point (Figure 4.2). The average gradation (Figure 4.3) for the 12 samples tested exceeds the upper control limit at 12.5 mm sieve by 6.7%. It is also 3.7% above on the 6.25 mm (1/4 inch) control point, 0.8% above on the 2 mm (No. 10) control point, and 0.3% above on the 0.075 (No. 200) control point.

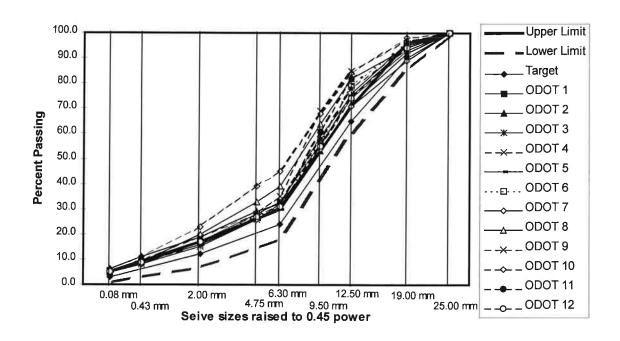


Figure 4.2: Extracted Gradation for Wolf Creek - W. Fork Dairy Creek

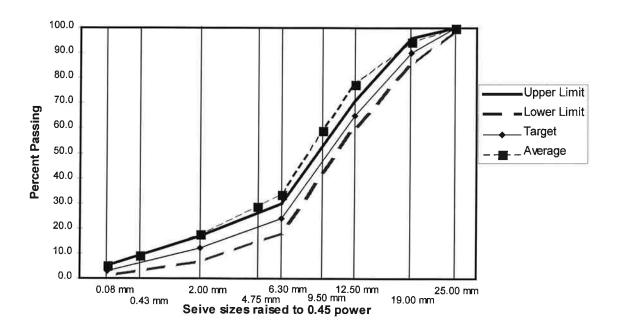


Figure 4.3: Average Extraction Gradation for Wolf Creek - W. Fork Dairy Creek

Asphalt content of the nine samples varied from 5.4 to 13.1% with an average of 6.9%. The average asphalt content exceeded the upper design limit by 0.4%. Only five of the tested samples met the design specification limits, while five exceeded the upper limit and two fell under the lower limit (Table 4.3). The void content for the cores tested by ODOT ranged from 5.3 to 14.6% with an average of 9.9% (Table 4.4).

Table 4.4. Summary Volumetrics for Wolf Creek-W. Fork Dairy Creek (ODOT)

	Geometric Bulk Specific Gravity	Maximum Specific Gravity	Percent Air Voids
Minimum	2.119	2.408	5.3
Maximum	2.309	2.482	14.6
Average	2.201	2.445	9,9
Standard deviation	0.07	0.02	3.2
Coefficient of variation (%)	3.0	0.9	31.7

4.2.1.2 OSU Tests

The void content for the cores tested by OSU ranged from 5.0 to 14.6% with an average of 9.6% (Table 4.5). The sample tested in the ECS remained at approximately 80% after the first cycle and had no significant stripping (Figure 4.4).

Table 4.5: Summary Volumetric Data for Wolf Creek-W. Fork Dairy Creek (OSU)

	Parafilm Bulk Specific Gravity	Percent Air Voids
Minimum	2.089	5.0
Maximum	2.308	14.6
Average	2.209	9.6
Standard deviation	0.07	3.0
Coefficient of variation (%)	3.0	31.0

Wolf Cr. - W. Fork Dairy Cr. Additives: None Asphalt: McCall PBA-5 (6.0%)

Specimen ID	ECS System	Air Voids (%)	Cond. Cycle	ECS Stress (psi)	ECS Strain (micro)	ECS MR (ksi)	ECS MR Ratio	Visual Stripping (%)
B05	O	5.2	0 1 2	17.5 13.8 15.8	100.9 100.9 102.8	174 137 154	1.00 0.79 0.89	0-5
			3 4	14.0 13.9	101.2 100.6	138 138	0.80 0.79	

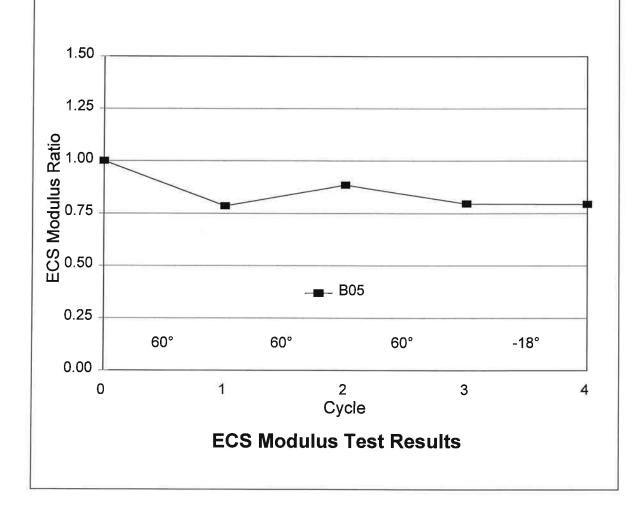


Figure 4.4: ECS Results for Wolf Cr. - W. Fork Dairy Cr.

4.2.2 Rufus-Arlington

4.2.2.1 ODOT Tests

Extraction results showed the individual gradation of the nine samples all exceeded the upper broadband limit significantly at a minimum of one gradation control point (Figure 4.5). The average gradation (Figure 4.6) for the nine samples tested first exceeds the upper control point at 12.5 mm sieve by 4.0%. As the average gradation continues through the control points, it is 9.1% above the 6.25 mm (1/4 inch) control point; 4.7% above the 2 mm (No. 10) control point; and ends almost 1% above at the 0.075 mm (No. 200) control point.

Asphalt content of the nine samples varied from 4.3 to 6.3% with an average of 5.5%. Although the average asphalt content was within design specifications, only two of the nine samples tested met the design limits of 4.9 to 5.7%. Six of the samples were above the upper asphalt limit and one sample was below the lower limit resulting in a median of 5.8% (Table 4.3). The void content for the cores tested by ODOT ranged from 6.0 to 18.2% with an average of 12.2% (Table 4.6).

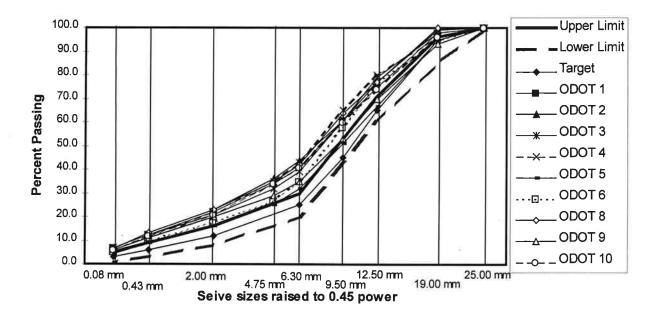


Figure 4.5: Extracted Gradation from Rufus-Arlington

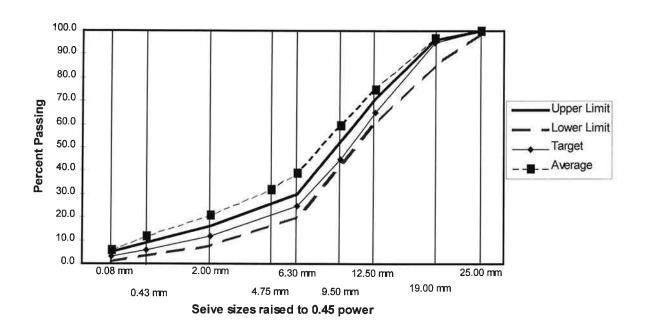


Figure 4.6: Average Extracted Gradation for Rufus-Arlington

Table 4.6: Summary Volumetrics for Rufus-Arlington (ODOT)

	Geometric Bulk Specific Gravity	Maximum Specific Gravity	Percent Air Voids
Minimum	2.138	2.536	6.0
Maximum	2.411	2.627	18.2
Average	2.259	2.574	12.2
Standard deviation	0.1	0.03	4.1
Coefficient of variation (%)	4.4	1.1	33.3

4.2.2.2 OSU Tests

The void content for the cores tested by OSU range from 3.6 to 16.9% with an average of 9.9% (Table 4.7). The sample tested in the ECS lowest modulus ratio was 86% and had no significant stripping (Figure 4.7).

Table 4.7: Summary Volumetric Data for Rufus-Arlington (OSU)

	Parafilm Bulk Specific Gravity	Percent Air Voids		
Minimum	2.154	3.6		
Maximum	2.466	16.9		
Average	2.307	9.9		
Standard deviation	0.1	4.3		
Coefficient of variation (%)	4.5	43.8		

Rufus - Arlington Additives: Lime Asphalt: Albina PBA-5 (5.3%)

Specimen ID	ECS System	Air Voids (%)	Cond. Cycle	ECS Stress (psi)	ECS Strain (micro)	ECS MR (ksi)	ECS MR Ratio	Visual Stripping (%)
	_		0 1	21.5 22.6	99.8 100.0	216 226	1.00 1.05	
A07	C 12.2	12.2	2 3 4	21.6 20.7 19.2	100.3 100.0 99.6	216 207 193	1.00 0.96 0.89	0-5

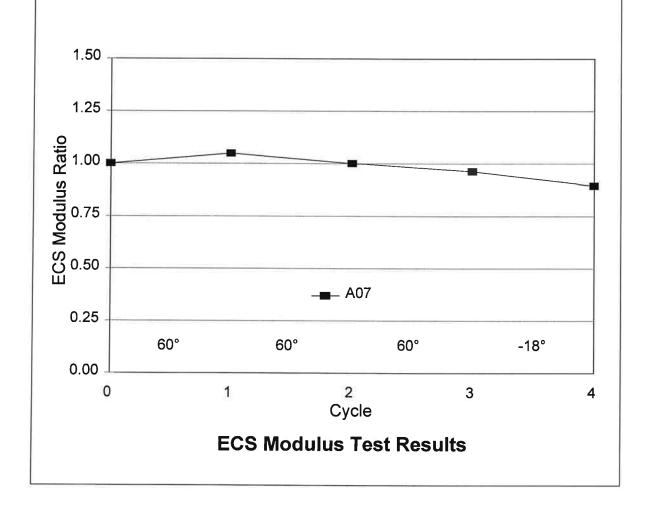


Figure 4.7: ECS Results for Rufus - Arlington

4.2.3 Baldock Slough-S. Baker

4.2.3.1 ODOT Tests

Extraction results showed the individual gradation of the three samples all exceeded the upper broadband limit significantly at a minimum of one gradation control point (Figure 4.8). The average gradation for the three samples tested first exceeds the upper control point at 12.5 mm sieve by 5.3%. As the average gradation continues through the control points it is 7.7% above the 6.25 mm (1/4 inch) control point, 2.2% above the 2 mm (No. 10) control point, and ends slightly lower than the 0.075 mm (No. 200) upper control point (Figure 4.9).

Asphalt content of the three samples varied from 5.4 to 5.8% with an average of 5.6%. All of the samples were within the design target range of 5.1 to 5.9% (Table 4.3). The void content for the cores tested by ODOT ranged from 7.4 to 11.0% with an average of 9.0% (Table 4.8).

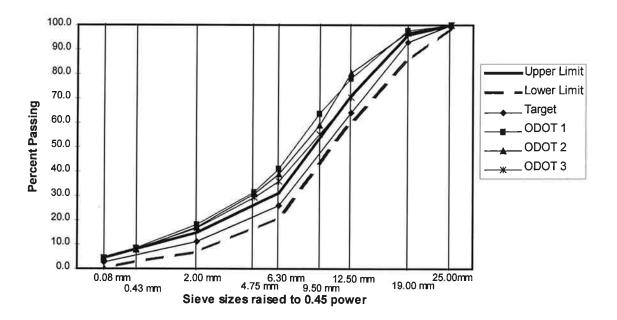


Figure 4.8: Extraction Results for Baldock Slough-S. Baker Interchange

4.2.3.2 OSU Tests

The void content for the cores tested by OSU ranged from 7.0 to 14.1% with an average of 10.8% (Table 4.9). The sample tested in the ECS lowest modulus value was 86% of its initial value after the fourth cycle and had 20-30% visual stripping (Figure 4.10). Although the sample did not have a significant reduction in modulus value, the visual stripping indicates the mix is sensitive to moisture.

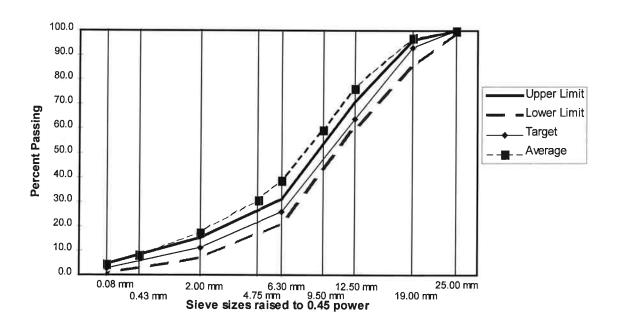


Figure 4.9: Average Extraction Results for Baldock Slough-S. Baker Interchange

Table 4.8: Volumetrics for Baldock Slough-S. Baker Interchange (ODOT)

	SSD Bulk Specific Gravity	Maximum Specific Gravity	Percent Air Voids	
Minimum	2.170	2.431	7.4	
Maximum	2.250	4.440	11.0	
Average	2.217	2.436	9.0	
Standard deviation	0.04	0.01	1.8	
Coefficient of variation (%)	1.9	0.2	20.4	

Table 4.9: Volumetric Data for Baldock Slough-S. Baker Interchange (OSU)

	Parafilm Bulk Specific Gravity	Percent Air Voids
Minimum	2.094	7.0
Maximum	2.262	14.1
Average	2.171	10.8
Standard deviation	0.04	1.9
Coefficient of variation (%)	2.0	17.1

Baldock Slough - S. Baker Interch. Additives: Lime Asphalt: Albina AC-20 (R) (5.5%)

Specimen ID	ECS System	Air Voids (%)	Cond. Cycle	ECS Stress (psi)	ECS Strain (micro)	ECS MR (ksi)	ECS MR Ratio	Visual Stripping (%)
			0	33.3	98.5	338	1.00	
			1	29.4	100.6	292	0.87	
F12	С	10.3	2	31.4	101.3	309	0.92	20-30%
			3	31.6	100.3	315	0.93	
			4	29.4	101.5	290	0.86	

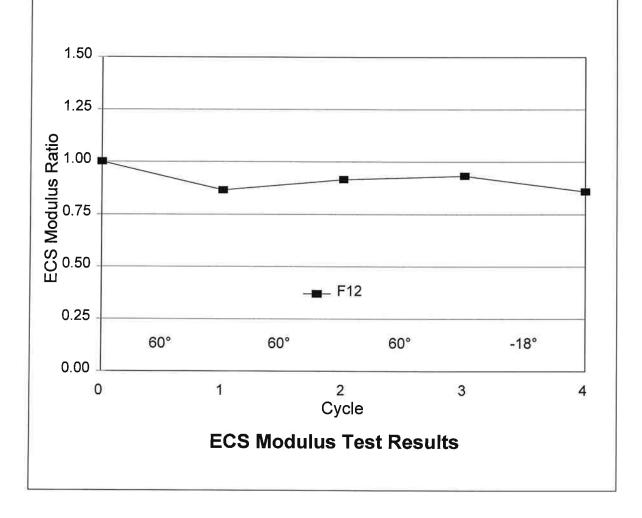


Figure 4.10: ECS Results for Baldock Slough - S. Baker Interchange

4.2.4 Forge Rd.-Lobert Rd.

4.2.4.1 ODOT Tests

Extraction results showed the individual gradation of the six samples all exceeded the upper broadband limit significantly at a minimum of one gradation control point (Figure 4.11). The average gradation for the six samples closely follows the upper limit of the mix design. Only at the 6.25 mm (1/4 inch) and 2 mm (No. 10) control points is the upper limit exceeded by 2.3% and 0.5%, respectively (Figure 4.12).

Asphalt content of the eight samples varied from 4.7 to 5.8% with an average of 5.0%. The average asphalt content fell below the lower design limit by 0.5%. Only one of the samples was within the design asphalt range while the remaining five fell below the minimum design asphalt (Table 4.3). The void content for the cores tested by ODOT ranged from 10.4 to 17.3% with an average of 14.1% (Table 4.10).

4.2.4.2 OSU Tests

The void content for the cores tested by OSU ranged from 10.3 to 15.5% with an average of 13.0% (Table 4.11). The sample tested in the ECS dropped to 70% of its original modulus after the second cycle and had 10-20% visual stripping on aggregate faces (Figure 4.13). This project should expect to exhibit stripping.

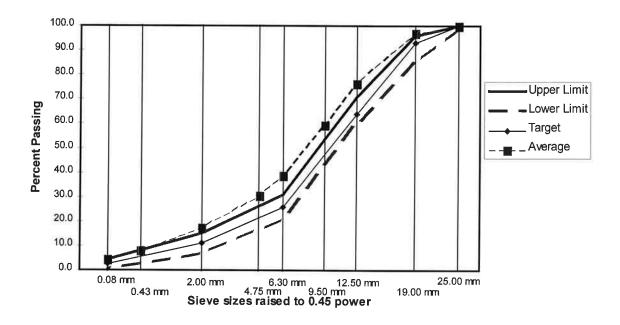


Figure 4.11: Extraction Results for Forge Rd.- Lobert Rd.

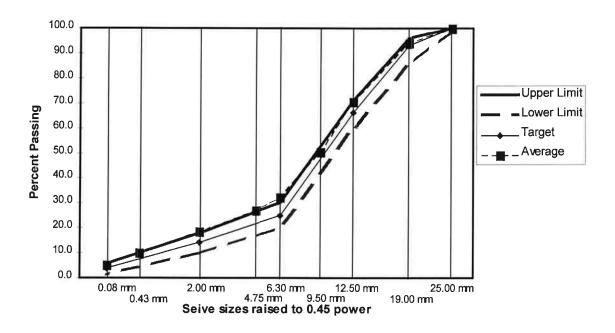


Figure 4.12: Average Extraction for Forge Rd.-Lobert Rd.

Table 4.10: Summary Volumetrics for Forge Rd.-Lobert Rd. (ODOT)

	Geometric Bulk Specific Gravity	Maximum Specific Gravity	Percent Air Voids	
Minimum	2.079	2.471	10.4	
Maximum	2.215	2.525	17.3	
Average	2.156	2.511	14.1	
Standard deviation	0.05	0.02	2.4	
Coefficient of variation (%)	2.3	0.8	16.9	

Table 4.11: Summary Volumetric Data for Forge Rd.-Lobert Rd. (OSU)

	Parafilm Bulk Specific Gravity	Percent Air Voids
Minimum	2.130	10.3
Maximum	2.237	15.5
Average	2.183	13.0
Standard deviation	0.03	1.5
Coefficient of variation (%)	1.5	11.9

Forge Rd. - Lobert Rd. Additives: Lime (1.0%) Asphalt: McCall AC-20 (R) (6.0%)

Specimen ID	ECS System	Air Voids (%)	Cond. Cycle	ECS Stress (psi)	ECS Strain (micro)	ECS MR (ksi)	ECS MR Ratio	Visual Stripping (%)
			0	30.0 24.4	101.1 101.9	297 240	1.00 0.81	
D10	С	14.1	2	21.0	101.1	208	0.70	10-20
			3	19.1	100.8	189	0.64	
			4	18.9	100.3	188	0.63	

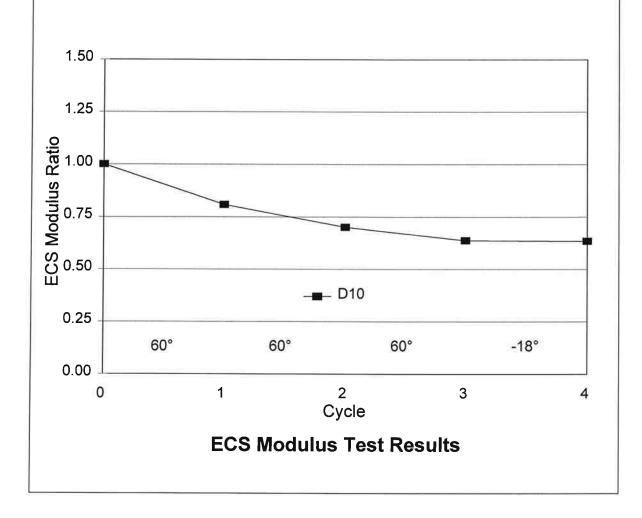


Figure 4.13: ECS Results for Forge Rd. - Lobert Rd.

4.2.5 Azalea-Jumpoff Joe

4.2.5.1 ODOT Tests

Extraction results showed the individual gradation of the eight samples all exceeded the upper broadband limit significantly at a minimum of two gradation control points (Figure 4.14). The average gradation for the eight samples tested first exceeds the upper control point at 6.25 mm (1/4 inch) sieve by 3.6%. It is 3.6% above on the 2 mm (No. 10) upper limit, and is at the upper limit of the 0.075 mm (No. 200) control point (Figure 4.15).

Asphalt content of the eight samples varied from 4.6 to 5.3% with an average of 5.1%. The average asphalt content fell below the lower design limit by 0.3%. All of the samples were under the lower design limit of 5.4% (Table 4.3). The void content for the cores tested by ODOT ranged from 6.0 to 17.4% with an average of 12.9% (Table 4.12).

4.2.5.2 OSU Tests

The void content for the cores tested by OSU ranged from 8.7 to 12.5% with an average of 10.9% (Table 4.13). The sample tested in the ECS dropped to 75% of its original modulus after the first cycle and reduced to 50% after the second cycle. The visual stripping of the sample after the fourth cycle revealed 5-10% of the aggregate faces were stripped (Figure 4.16). This project may exhibit stripping in the distant future; however, because it is in western Oregon and does not experience severe freeze-thaw action, the stripping will be slow to develop.

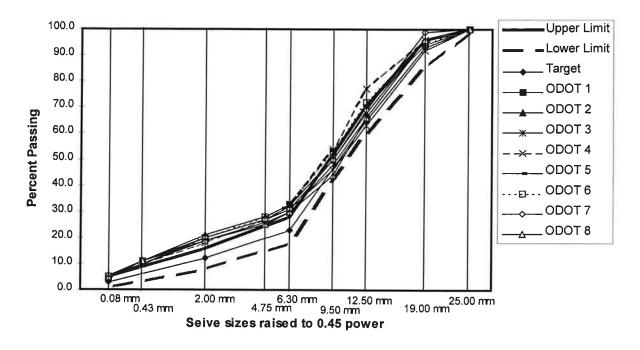


Figure 4.14: Extraction Results for Azalea-Jumpoff Joe

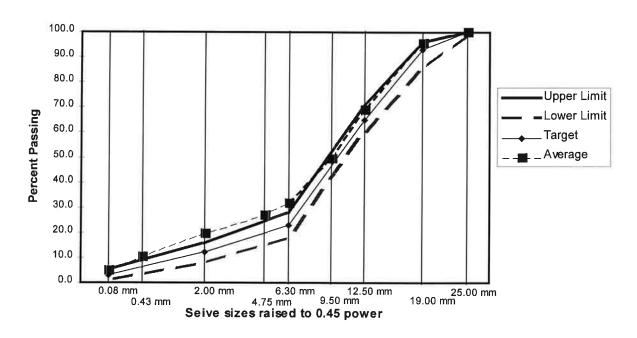


Figure 4.15: Average Extraction Results for Azalea-Jumpoff Joe

Table 4.12: Summary Volumetrics for Azalea-Jumpoff Joe (ODOT)

	Geometric Bulk Specific Gravity	Maximum Specific Gravity	Percent Air Voids	
Minimum	2.214	2.447	6.0	
Maximum	2.380	2.680	17.4	
Average	2.269	2.610	12.9	
Standard deviation	0.05	0.10	4.3	
Coefficient of variation (%)	2.3	3.9	33.4	

Table 4.13: Summary Volumetric Data for Azalea-Jumpoff Joe (OSU)

	Parafilm Bulk Specific Gravity	Percent Air Voids
Minimum	2.283	8.7
Maximum	2.382	12.5
Average	2.326	10.9
Standard deviation	0.03	1.1
Coefficient of variation (%)	1.2	9.9

Azalea - Jumpofff Joe Additives: Lime Asphalt: Chev PBA-6 (5.6%)

Specimen ID	ECS System	Air Voids (%)	Cond. Cycle	ECS Stress (psi)	ECS Strain (micro)	ECS MR (ksi)	ECS MR Ratio	Visual Stripping (%)
C03	С	10.6	0 1 2	15.6 11.9 8.1	99.1 100.1 100.7	158 119 81	1.00 0.75 0.51	5-10
			3 4	7.9 8.5	100.2 100.4	79 84	0.50 0.53	

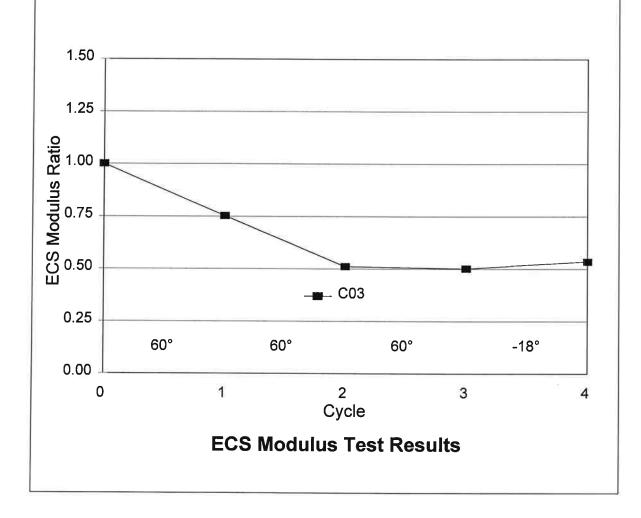


Figure 4.16: ECS Results for Azalea - Jumpoff Joe

4.2.6 Halsey Interchange-Lane County Line

4.2.6.1 ODOT Tests

Extraction results showed the gradation of about half of the samples crossed the upper limit by more than 5% at the 8.3 mm (1/3 inch) and 6.25 mm (1/4 inch) control points (Figure 4.17). The average gradation for the 11 samples does not display this well because the other half of the samples were within the upper limit. The average gradation for the 11 samples tested first exceeds the upper control point at 12.5 mm sieve by 2.2%. As the average gradation continues through the control points, it is 4.1% above the 6.25 mm (1/4 inch) control point and falls back into the design limits by the No. 10 control point (Figure 4.18).

The asphalt content of the samples varied from 5.0 to 6.1% with an average of 5.7%. Only one of the samples fell below the lower limit of 5.4% while the remaining ten were within the design asphalt content limits (Table 4.3). The void content for the cores tested by ODOT ranged from 5.3 to 14.6% with an average of 10.6% (Table 4.14).

4.2.6.2 OSU Tests

The void content for the cores tested by OSU ranged from 8.5 to 16.0% with an average of 11.9% (Table 4.15). The sample tested in the ECS never fell below the initial modulus but did have 5-10% visual stripping (Figure 4.19).

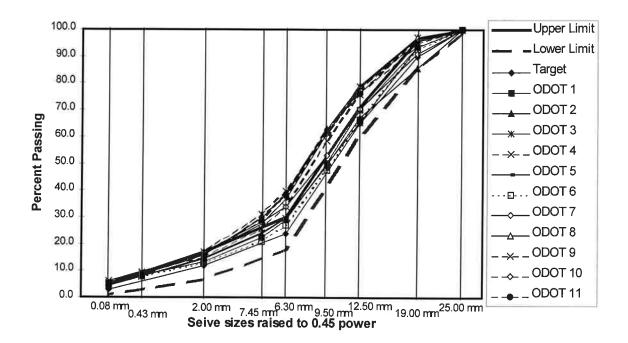
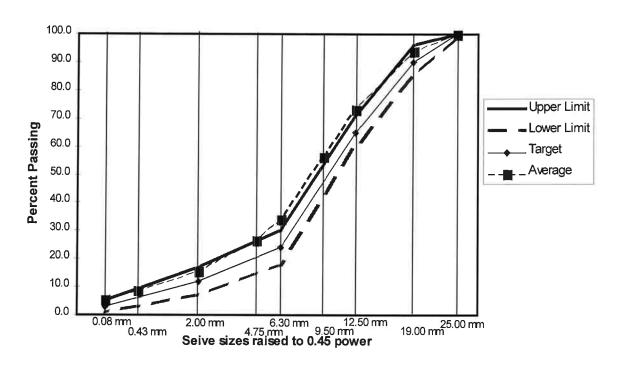


Figure 4.17: Extraction Results for Halsey Interchange-Lane County Line



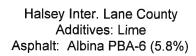

Figure 4.18: Average Extraction Results for Halsey Interchange-Lane County Line

Table 4.14: Summary Volumetrics for Halsey Interchange-Lane County Line (ODOT)

	Geometric Bulk Specific Gravity	Maximum Specific Gravity	Percent Air Voids	
Minimum	2.119	2.420	5.3	
Maximum	2.309	2.493	14,6	
Average	2.192	2.453	10.6	
Standard deviation	0.06	0.03	2.8	
Coefficient of variation (%)	2.7	1.0	26.6	

Table 4.15: Summary Volumetric Data for Halsey Interchange-Lane County Line (OSU)

	Parafilm Bulk Specific Gravity	Percent Air Voids
Minimum	2.034	8.5
Maximum	2.258	16.0
Average	2.148	11.9
Standard deviation	0.15	2.2
Coefficient of variation (%)	3.1	18.4

Specimen ID	ECS System	Air Voids (%)	Cond. Cycle	ECS Stress (psi)	ECS Strain (micro)	ECS MR (ksi)	ECS MR Ratio	Visual Stripping (%)
			0	13.7	100.8	136	1.00	
			1	15.9	100.6	158	1.16	
E07	C	13.9	2	17.7	100.4	177	1.30	5-10
			3	17.8	100.5	177	1.31	
			4	14.4	100.2	144	1.06	

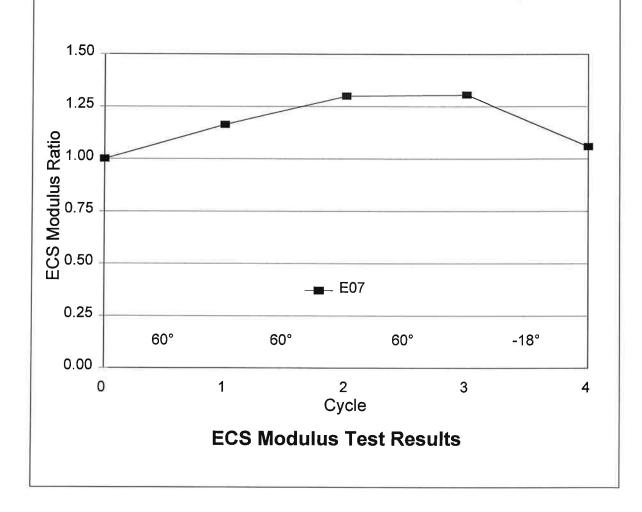


Figure 4.19: ECS Results for Halsey Interchange - Lane County

4.3 DISCUSSION

The following is an evaluation of the results from the lab study for each of the projects:

- 1) Wolf Creek-W. Fork Dairy Creek This project had extensive fat spots. The aggregate gradation is finer and the asphalt content is higher than specified. The haul distance for this job was 90 km (56 miles), which may have contributed to the drain down and the fat spots. It does not explain the finer gradation, which contributed to the low voids. The ECS test results suggest that the fat spots are a drain down problem and not a stripping one.
- 2) Rufus-Arlington Although this project was in relatively good condition, it did not conform to the F-mix gradation. This explains the relative low air voids found along the project length. The results of the ECS tests indicate the mix was resistant to stripping. There is no clear explanation for the stains along a portion of the project.
- 3) <u>Baldock Slough-S. Baker Interchange</u> This project experienced some isolated stripping at select sites on the project. The average gradation for the mix was on the fine side of the gradation curve and the voids low. Although the mix did not have a significant reduction in its ECS modulus value, the visual stripping indicates the mix is sensitive to moisture.
- 4) Forge Rd.-Lobert Rd. This project was one of the two experiencing stripping problems. It is a heavy traffic site in a severe climate. The mix contains hydrated lime as an anti-strip agent. Again the mix tends to be on the fine side and the asphalt content was lower than the target value. Although the void content averaged 15.5%, the ECS test shows a significant drop in ECS modulus and a high amount of visual stripping confirming a moisture sensitivity problem.
- 5) Azalea-Jumpoff Joe This project was in fair condition; however, a portion of it did not seem to offer the splash and spray benefit. The gradation again was on the fine side of the F-mix bar and the void content was low. Also, a fog seal was applied to sections of this project which helps explain the poor splash and spray properties for this mix. The mix appears sensitive to moisture damage; however, at the time of this report (1996), there was no evidence of moisture damage in the field.
- 6) <u>Halsey Interchange-Lane County Line</u> This project is experiencing the problem of shoving in the southbound truck lane. The northbound lanes, which contain a different asphalt and mix design, are not showing any problems. The extraction results show half of the samples meet the target gradation and half did not, suggesting a segregation problem. The ECS results showed that the mix is not moisture sensitive.

4.4 SUMMARY

In general, the laboratory study indicated all of the mixes were generally finer than the mix design gradation. The asphalt content for the cores tested showed two projects had high asphalt

contents, two projects had low values, and two were within the design specifications. The samples tested in the ECS indicated the water sensitivity of the two known problem mixes and another mix was also shown to potentially have a water sensitivity problem.

In specific, the following emerged from the results of the laboratory study:

- 1) Sampling at the cold feed may not be adequate to control the gradation of the opengraded mixes because the gradation of the cores tend to be on the fine side of the broadband.
- 2) Segregation may be an issue with the open-graded mixes leading to isolated fat spots and raveled areas.
- 3) Water sensitivity of mixes (treated with lime) did not appear to be a major problem. However, there may be isolated areas (e.g., Forge Rd.-Lobert Rd.) where lime is not present due to poor mixing.
- 4) Additional study projects may be required to link the exact causes of the problems observed to gradation, asphalt and moisture content.

5.0 EVALUATION OF FINDINGS

The purpose of this chapter is to evaluate information from the literature review, the field survey, and the laboratory study, to recommend which factors affect performance, determine which factors should be controlled during production, and to develop improved F-mix pay factors. The sections detailed below present an evaluation of the data.

5.1 FACTORS AFFECTING PERFORMANCE

The factors affecting performance were first identified through the literature review and expert survey. These factors were then further explored by conducting a field survey and laboratory evaluation of projects in Oregon. Follow-up interviews with agencies and experts were made to further refine the recommendations, and QC/QA data were analyzed to see if the findings were consistent with previous work.

5.1.1 Literature Review and Expert Survey

<u>Asphalt Content</u>. This factor was found to be an important one, affecting the performance of porous pavements. Too much asphalt caused fat spots and rutting while too little asphalt led to raveling.

Asphalt Type. Many researchers are addressing the issues with asphalt type by improving the rheological properties of the asphalt binder.

Aggregate Gradation. This factor has contributed to a number of performance issues, including fat spots (Page 1993); loss of permeability (Smith 1992; Gemayel and Mamlouk 1993); clogging (Colwill et al. 1993; Page 1993; Younger, Hicks and Gower 1994); air voids (Gemayel and Mamlouk 1993); and mix stiffness (Gemayel and Mamlouk 1993). According to the literature, aggregate type can contribute to minimizing raveling.

<u>Aggregate Moisture</u>. This was an important factor influencing pavement performance according to the survey responses. Generally speaking, too much moisture causes boiling of the asphalt and contributes to fat spots in the mixture.

In summary, the survey responses and recent literature suggest that asphalt content and aggregate gradation are the most important factors related to performance of porous pavement. Raveling tends to be the biggest problem followed by fat spots. To a large degree, these are both related to asphalt content. Potential for improvements may lie in the use of asphalt containing modifiers, close controls on the binder and mix temperatures, and development of improved mix design procedures.

5.1.2 Field Survey and Laboratory Evaluation

The results of the field survey and the laboratory test program suggest that asphalt content and aggregate gradation may affect the short-term and long-term performance of F-mixes. Higher asphalt contents may lead to fat spots and rutting. Lower asphalt may lead to raveling. Although the aggregate gradation for most of the projects sampled tended to be finer than the job mix formula, there is no conclusive evidence to suggest the finer mixes contributed to any of the problems.

The field survey and laboratory test program were also not clear with respect to importance of mix moisture on performance. Projects which reported high moisture content showed no visible problems in the field. ODOT has relaxed the current mix moisture requirement and this decision is generally consistent with the study's findings.

5.1.3 Follow-up Interviews

Follow-up interviews were conducted to explore further some of the initial findings from the literature review, field survey, and expert survey. The interviews allowed practitioners to react to initial findings so that their opinions could be further incorporated into the final recommendations. Follow-up interviews were conducted with ODOT maintenance personnel and with several state agencies having the most experience with porous pavements. In addition, feedback was solicited from contractors at a meeting of the Asphalt Pavement Association of Oregon (APAO) Board of Directors meeting in Newport, Oregon.

Maintenance personnel from Clackamas, Medford, and The Dalles were also interviewed in the follow-up study. General comments indicated that F-mixes were performing well in these areas. When questioned about performance problems with F-mixes, those interviewed commented on issues such as a lack of drainage due to the fog seals, or clogging (water can collect and freeze, causing cracking and black ice); fat spots (excess asphalt); raveling; and damage due to snow plows and studded tires. Comments concerning fat spots and raveling were consistent with the findings from the field survey.

At the Newport APAO meeting, the contractors were asked, "What are the most important short-and long-term performance problems in F-mixes?" Their opinions included:

- 1) <u>Haul Temperature</u>. In many instances, it is necessary to run the plant hotter than normal to deal with longer haul distances.
- 2) Fat Spots. Asphalt content is critical to this type of distress.
- 3) <u>Mix Design Process</u>. The current process needs to be improved since contractors will soon start doing mix design; the inherent variability in the process needs to be reduced.
- 4) Smoothness. Some concern was expressed over the need for a smoothness requirement.
- 5) Night Time Work. Problems are worse at night due to lower temperatures. Segregation is worse at night.

Many of these issues are actually production issues and are discussed in more detail in the next section.

5.2 FACTORS TO CONTROL DURING PRODUCTION

Like the factors affecting performance, factors that need to be controlled during production were first identified through the literature review and expert survey. These factors were subsequently further explored through a field survey and laboratory evaluation of projects in Oregon. Finally, follow-up interviews with agencies and experts were done to refine the recommendations, and QC/QA data was analyzed to see if findings were consistent with previous work.

5.2.1 Literature Review and Expert Survey

In reviewing the literature on factors that need to be controlled during production, it is important to remember that the primary concern is process control (quality control), not quality assurance. Process control is the responsibility of the contractors and is the means by which they insure that they are laying a high quality pavement. Quality assurance, on the other hand, is the means by which the agency (ODOT) verifies contractor process control testing and independently inspects the pavement to confirm that the contractor is laying a high quality pavement.

Table 2.4 presented the factors used for quality control as well as the pay factors for three states: Florida, Nevada, and Oregon. All three states specify that quality control should apply to aggregate gradation and asphalt content. However, these agencies do vary on which sieve sizes they believe to be important.

5.2.2 Field Survey and Laboratory Evaluation

Based on these studies, it was shown that several of the projects sampled were out of specification on both gradation and asphalt content. Unfortunately, with a sample size of only six projects, it is difficult to link clearly the relationship between gradation and asphalt content to performance. However, if the job mix formula is the desired target, then the observed variations about the target could have contributed to the observed performance problems. The out of specification jobs tended to result in lower air voids, isolated fat spots and rutting, and diminished splash and spray characteristics.

5.2.3 Follow-up Interviews and QC/QA Data

Initial findings concerning performance factors and production factors indicated that aggregate gradation and asphalt content are critical to the performance of porous pavements. However, there were several other issues identified for which there was not a clear consensus. These included ambient temperature, mix temperature, maximum haul distance or haul time, maximum storage time, and equipment used. It was important to conduct follow-up interviews to determine if the experts felt these factors were important. Table 5.1 summarizes the results of these follow-up interviews.

Table 5.1: Results from Follow-up Interviews with Selected Agencies

Factor	Florida (Gale Page)	Nevada (Rudy Edgington)	Texas (Maghsoud Tahmoressi)	Washington (Robyn Moore)
Ambient temperature	15.6°C and rising	15.6°C ambient 15.6°C surface	21.1°C and rising	15.6°C
Compliance notes	none	no night paving in northern region	restricted paving season	typically avoid night paving
Mix temperature	143.3°C with rubber 115.6°C w/out rubber	none provided	82.2-126.7°C in specs 121.5-132.2°C in practice	Max 126.7°C
Taken at plant?	yes	Yes	yes	yes
Taken at paving site?	yes	Yes	no	no
Compliance notes	removed if out of specification	none provided	no difficulties	no difficulties
Maximum haul distance or haul time	no restrictions	no restrictions	no restrictions, probably good idea	no restrictions
Maximum storage time	1 hour in silo	no restrictions	no restrictions	24 hours
Equipment requirements	No restrictions	no restrictions	Insulated trucks to main- tain temperature	no restrictions

According to Texas DOT, excess mix moisture is the cause of many problems. However, it is not used as a pay factor because the measurements taken with the oven method are not reliable. Oregon uses both microwave and conventional ovens (see Table 3.5).

Other states seem to have strict enforcement of the ambient temperature restrictions (e.g., no night time paving where the temperature may be below 16°C (60°F)). At the June 1996 Technical Advisory Committee meeting, members suggested that in Oregon (due to increased layer thicknesses), this criteria is not as critical for Oregon F-mixes (e.g., lower ambient temperatures may be permitted).

The issues related to mix temperature and haul time/distance are closely related. Process control could be established by placing limits on haul time and/or haul distance, or by requiring mix temperature readings at both the production plant and at the paving site. Florida and Nevada handle it this way.

Follow-up interviews with other contractor and agency personnel who are familiar with the production of porous pavements in Oregon indicated that, while the appropriate testing is taking place, the contractors are not typically using control charts to make effective decisions based on data. Contractor process control data were not available for analysis, but ODOT quality assurance data were available. For all of the projects where there was a sufficient amount of QA test results, the researchers charted the data as though they were QC data to determine how often the data would have indicated a need to consider corrective action. Table 5.2 indicates the projects and factors for which charts were created.

The charts are provided in Appendix D. On the charts, an "X" indicates that a corrective action might be necessary. In reviewing these charts, the reader must realize that the charts use control limits and not specification limits to determine when corrective action might be necessary. It is desirable for the control limits to be within the specification limits. Table 5.3 indicates whether the control limits were within the specification limits for each of the projects and factors charted.

Table 5.2: Projects and Factors for which Control Charts were Made

Project	12.5 mm (1/2")	6.25 mm (1/4")	2 mm (#10)	0.075 mm (#200)	Asphalt Content	Moisture Content
Hayesville - Battle Creek	X	X	X	X	X	X
W. Marquam - N. Tigard	X	X	X	X	X	X
Wolf Cr W. Fork Dairy Cr.	X	X	X	X	X	X
Corbett Intch Multnomah	X	X	X	X	X	X
Rufus - Arlington (West Unit)	X	X	X	X	X	Х
Rufus - Arlington (East Unit)	X	X	X	X		X
E. Pendleton - Emigrant Hill Lot 2B	x	х	х	х	х	х
Baldock Slough - S. Baker Lot 1	х	х	Х	х	х	х
Forge Rd Lobert Rd.	X	X	X	X	X	X
Jumpoff Joe - N. Grants Pass						
Lot 1	X	x	X	X		X
Lot 2	X	X	X	X	X	X X
Azalea - Jumpoff Joe	X	X	X	X	X	Х
Halsey Intch Lane Co. Line				1		
Lot 3	X	X	X	X		X
Lot 4	X	X X	X	x		X

As the table shows, control limits were outside the specification limits 93% of the time for the 12.5 mm (1/2 in.) sieve, 64% of the time for the 6.25 mm (1/4 in.) sieve, 7% of the time for the 2 mm (#10) sieve and the 0.75 mm (#200) sieve, 50% of the time for asphalt content, and 36% of the time for moisture content. If processes are effectively managed using statistical process control, control limits should not be outside specification limits.

Table 5.3: Were Control Limits within Specification Limits?

Project	12.5 mm (1/2")	6.25 mm (1/4")	2 mm (#10)	0.075 mm (#200)	Asphalt Content	Moisture Content
Hayesville - Battle Creek	No	No	Yes	Yes	No	Yes
W. Marquam - N. Tigard	No	Yes	Yes	No	No	Yes
Wolf Cr W. Fork Dairy Cr.	No	No	Yes	Yes	No	No
Corbett Intch Multnomah	No	No	Yes	Yes	Yes	No
Rufus - Arlington (West Unit)	No	Yes	Yes	Yes	Yes	Yes
Rufus - Arlington (East Unit)	No	Yes	Yes	Yes	2 	No
E. Pendleton - Emigrant Hill Lot 2B	No	No	Yes	Yes	No	Yes
Baldock Slough - S. Baker Lot 1	No	No	Yes	Yes	Yes	Yes
Forge Rd Lobert Rd.	No	Yes	Yes	Yes	No	No
Jumpoff Joe - N. Grants Pass Lot 1 Lot 2	No No	No No	No Yes	Yes Yes	_ Yes	Yes Yes
Azalea - Jumpoff Joe Lot 2	Yes	No	Yes	Yes	Yes	Yes
Halsey Intch Lane Co. Line Lot 3 Lot 4	No No	No Yes	Yes Yes	Yes Yes	-	Yes No
Summary (No/Yes)	13/1	9/5	1/13	1/13	5/5	5/9

The purpose of process control is to collect information on the porous mixture to be able to make effective decisions based on data. Variations exist in everything: the aggregate, the asphalt, the equipment used, the mix temperature, the personnel running the equipment, the paving conditions, and even in the testing methods used. Given all of the sources of variation in a production process, the most effective way to make decisions based on data in this setting is through the use of control charts.

Control charts allow the contractor's personnel to diagnose patterns in the data consistently so that corrective actions can be taken in a timely fashion. Each point graphed on the control chart should be an average of at least two numbers (tests). This can best be accomplished by taking two samples from a sublot, testing both, and averaging the test results. If this is an unacceptable approach, an alternate would be to use a moving average and a moving range chart which will not increase the amount of testing required. By following these procedures, the control charts will be more sensitive to changes in the process and will identify potential problems more quickly.

5.3 COMPARISON OF QC AND CORE DATA

Tables 5.4 through 5.8 compare the QC data (in Chapter 3) with the core results (in Chapter 4). As was mentioned previously, it is possible for the overall mean to be within specification limits (99.7% of data) while still having problems with quality due to a high standard deviation. One way to check for this problem is to compare the specification limits with the mean plus or minus three standard deviations.

In the tables, the QC data analysis considered the specification limit that was relevant to core findings. Typically, in the cases analyzed in this study the primary interest is the upper specification limit. Therefore, the tables show the upper specification limit and the mean plus three standard deviations. The only exception is Table 5.8, which considers asphalt content. In this case, some core results were over the upper specification limit and some were under the lower specification limit. Therefore, both the mean plus and minus three times the standard deviation are shown in Table 5.8.

If the processes used to produce these pavements were in states of statistical control and centered within the specification limits, one would expect that the upper specification limit would be greater than the mean plus three standard deviations, and one would expect that the lower specification limit would be less than the mean minus three standard deviations. The QC data results column describes these comparisons. For example, if the mean plus three standard deviations is greater than the specification limit, this would be consistent with a core results finding that the core average could be at the upper specification limit or could exceed it. If the QC data and core findings are consistent, this would strengthen the expected results. In other words, consistency between QC and core results means that the quality control results indicate that the core results are not surprising. Inconsistency does not imply that either result (QC data or core data) is wrong.

Table 5.4: Comparison of QC Data and Core Results for 12.5 mm Sieve

					QC Data			
Project	Target	Mean	Standard Deviation	Upper Spec. Limit	Mean +3 Standard Deviation s	QC Results	Core Results	Are Results Consistent
Wolf Creek – W. Fork Dairy Creek	65	66.32	3.24	71	76.04	Since $76.04 > 71$, it is likely that cores could exceed the upper spec. limit.	Average exceeds upper spec. limit by 6.7%	Yes
Rufus – Arlington (east unit)	9	64.83	3.55	71	75.48	Since $75.48 > 71$, it is likely that cores could exceed the upper spec. limit.	Average exceeds upper spec. limit by 4.0%	Yes
Baldock Slough - S. Baker	64	98.99	3.07	71	76.07	Since $76.07 > 71$, it is likely that cores could exceed the upper spec. limit.	Average exceeds upper spec. limit by 5.3%	Yes
Forge Rd Lobert Rd.	99	61.53	4.46	7.1	74.91	Since $74.91 > 71$, it is likely that cores could average at the upper spec. limit.	Average is at upper spec. limit	Yes
Azalea - Jumpoff Joe (south end) Lot 1 Lot 2	99	61.29	1.80	71 71	66.69	If cores were taken from Lot 1, since 66.69 < 71, it is likely that cores would be within the upper spec. limit. If cores were taken from Lot 2, since 72.27 is only slightly higher than 71, the cores could average within the spec. limit.	Average is within spec. limits	Yes
Haisey Intch Lane Co. Line Lot 3 Lot 4	99	64.75	4.28 3.14	71 71	77.59	Since $77.59 > 71$ and $73.63 > 71$, it is likely that cores could exceed the upper spec. limit.	Average exceeds upper spec. limit by 2.2%	Yes

Table 5.5: Comparison of QC Data and Core Results for 6.25 mm Sieve

					QC Data			
Project	Target	Mean	Standard Deviation	Upper Spec. Limit	Mean + 3 Standard Deviations.	QC Results	Core Results	Are Results Consistent
Wolf Creek - W. Fork Dairy Creek	24	24.95	2.74	30	33.17	Since 33.17 > 30, it is likely that cores could exceed the upper spec. limit.	Average exceeds upper spec. limit by 3.7%	Yes
Rufus – Arlington (east unit)	25	24.53	2.39	30	31.70	Since 31.70 > 30, it is likely that cores could exceed the upper spec. limit.	Average exceeds upper spec. limit by 9.1%	Yes
Baldock Slough – S. Baker	26	29.21	2.01	31	35.24	Since 35.24 > 31, it is likely that cores could exceed the upper spec. limit.	Average exceeds upper spec. limit by 7.7%	Yes
Forge Rd. – Lobert Rd.	25	26.94	2.16	30	33.42	Since 33.42 > 30, it is likely that cores could exceed the upper spec. limit.	Average exceeds upper spec. Iimit by 2.3	Yes
Azalea – Jumpoff Joe (south end) Lot 1 Lot 2	21 23	26.14	1.68	25 28	31.18	Since 31.18 > 25 and 33.18 > 28, it is likely that cores could exceed the upper spec. limit.	Average exceeds upper spec. limit by 3.6%	Yes
Halsey Intch Lane Co. Line Lot 3 Lot 4	24 24	25.46 24.01	3.5 2.99	29 29	35.96 32.98	Since 53.96 > 29 and 32.98 > 29, it is likely that cores could exceed the upper spec. limit.	Average exceeds upper spec. limit by 4.1%	Yes

Table 5.6: Comparison of QC Data and Core Results for 2 mm (#10) Sieve

					QC Data			
Project	Target	Mean	Standard Deviation	Upper Spec. Limit	Mean + 3 Standard Deviations	QC Results	Core Results	Are Results Consistent
Wolf Creek - W. Fork Dairy Creek	12	12.89	1.77	17	18.20	Since 18.20 > 17, it is likely that cores Average exceeds upper could exceed the upper spec. limit.	Average exceeds upper spec. limit by 0.8%	Yes
Rufus – Arlington (east unit)	11	10.59	1.50	16	15.09	Since 15.09 < 16, it is not likely that cores could average above the spec. limit.	Average exceeds upper spec. limit by 4.7%	No.
Baldock Slough – S. Baker	11	12.22	0.93	15	15.01	Since 15.01 _ 15, it is not likely that cores could average at the spec. limit.	Average exceeds upper spec. limit by 2.2%	No
Forge Rd. – Lobert Rd.	14	13.18	1.51	18	17.71	Since 17.71 < 18, it is not likely that cores could average above the spec. limit.	Average exceeds upper spec. limit by 0.5%	No
Azalea – Jumpoff Joe (south end) Lot 1 Lot 2	11	11.75	0.53	15 16	13.34	Since 13.34 < 15 and 16.39 _ 16, it is not likely that cores could average above spec. limit.	Average exceeds upper spec. limit by 3.6%	No Yes
Halsey Intch Lane Co. Line Lot 3 Lot 4	12	11.63	1.86	16 16	17.21	If cores were taken from Lot 1, since 17.21 > 16, it is likely that cores could exceed the upper spec. limit. If cores were taken from Lot 2, since 14.36 < 16, cores should average within the spec. limit.	Average is at the upper spec. limit	Yes No

Table 5.7: Comparison of QC Data and Core Results for 0.075 mm (#200) Sieve

					QC Data	æ		
Project	Target	Target Mean	Standard Deviation	Upper Spec. Limit	Mean + 3 Standard Deviations	QC Results	Core Results	Are Results Consistent
Wolf Creek - W. Fork Dairy Creek	3.0	2.73	0.37	5.0	3.84	Since 3.84 < 5.0, it is not likely that cores could average above the spec. limit.	Average exceeds upper spec. limit by 0.3%	No
Rufus - Arlington (east unit)	3.0	2.21	0.45	5.0	3.56	Since $3.56 < 5.0$, it is not likely that cores could average above the spec. limit.	Average exceeds upper spec. limit by 1.0%	No
Baldock Slough - S. Baker	2.6	2.75	0.19	4.6	3.32	Since 3.32 < 4.6, it is not likely that cores could average above the spec. limit.	Average is at upper spec. limit	No
Forge Rd Lobert Rd.	3.6	2.91	09.0	5.6	4.71	Since $4.71 < 5.6$, it is not likely that cores could average above the spec. limit.	Average is at upper spec. limit	No
Azalea - Jumpoff Joe (south end) Lot 1 Lot 2	3.0	2.23	0.23	5.0	2.92	Since 2.92 < 5.0 and 3.58 < 5.0, it is not likely that cores could average above the spec. limit.	Average is at upper spec. limit	No No
Halsey Intch Lane Co. Line Lot 3 Lot 4	4.0	4.10	0.72 0.56	6.0	6.26 5.24	Since 6.26 > 6.0 and 5.24 < 6.0, it is not likely that cores could average above the spec. limit.	Average is at upper spec. limit	No No

Table 5.8: Comparison of QC Data and Core Results for Asphalt Content

Project Target Mean Rean Deviation Standard Spec. Standard Spec. Cover Mean + 3 (and proved proved by the cover stood by the cover spec, and proved proved by the cover sound be above spec. QC Results Wolf Creek - W. Creek 6.0 6.00 0.39 6.5 7.17 5.5 4.83 Since 7.17 < 6.5, it is likely that spec. and prove spec., and spec. and prove spec., and spec. and prove spec. 5 ords sound be above spec., and spec. and						O	QC Data				
Target Mean Deviation Limit Deviations Limit	Project			Standard	Upper	Mean + 3	Lower	Mean – 3		; ;	Are
Creek - W. Cannit Deviations Limit Deviations Limit Deviations Limit Deviations Creek - W. ark Dairy 6.0 6.39 6.5 7.17 5.5 4.83 Since 7.17 < 6.5, it is likely that cores could be above spec., and since 4.83 < 5.5, it is also likely that cores could be below spec.		Target	Mean	Deviation	Spec.	Standard	Spec.	Standard	QC Results	Core Results*	Results
Creek - W. Creek - W. Go 6.00 0.39 6.5 7.17 5.5 4.83 Since 7.17 6.5, it is likely that ark Dairy eek Arlington Arlington Arlington S.5 5.42 0.24 5.9 6.14 4.9 4.70 and since 4.06 5.19, it is also likely Arlington Arlin					Limit	Deviations	Limit	Deviations			Comsistent
rk Dairy 6.0 6.00 0.39 6.5 7.17 5.5 4.83 cores could be above spec., and eek 1.4 Arlington 5.5 5.42 0.24 5.9 6.14 4.9 4.70 and since 4.35 5.45 0.20 5.9 6.05 5.1 4.85 possible that cores could be below spec. and since 4.70 4.90, it is also below spec. and since 4.70 4.90, it is also below spec. and since 4.70 4.90, it is also below spec. and since 4.70 4.90, it is also possible that cores could be below spec. and since 4.70 4.90, it is also possible that cores could be below spec. and since 4.70 4.90, it is also possible that cores could be below spec. are within spec. limits, it is possible that all selected cores are within spec. limits, it is likely that a -1 Jumpoff 5.0 4.87 0.15 5.2 5.32 4.8 4.42 it is possible that cores could be below spec. are within spec. limits. It is likely that a cores could be below spec. Since 6.0 6.5 5.6 0.09 5.8 5.83 5.4 5.29 below spec. Since 4.42 c.4.8 and 5.29 c.5.4, it is likely that one core could be below spec. Since 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	Wolf Creek - W.								Since 7.17 < 6.5, it is likely that	5 of 12 within	Over-Yes
Since 4.83 < 5.5, it is also likely that cores could be below spec. Since 6.14 4.9 4.70 and since 4.83 < 5.5, it is also likely that cores could be below spec.	Fork Dairy	0.9	00 9	0 30	8 9	717	٧ ٧	1 83	cores could be above spec., and	0 01 12 WILLIIII	
Continuity S.5 S.42 O.24 S.9 6.14 4.9 4.70 A.70 A.85 A.85	Creek		2);;		/1./		6.5	since $4.83 < 5.5$, it is also likely	spec.	Under-Yes
Since 6.14 > 5.19, it is possible that cores could be above spect, and thington 5.5 5.42 0.24 5.9 6.14 4.9 4.70 and since 6.14 > 5.19, it is possible that cores could be above spect, and since 4.70 < 4.90, it is also possible that cores could be above spect, and since 6.14 > 5.19, it is possible that cores could be above spect, and since 4.70 < 4.90, it is also possible that cores could be below spect. Rd Lobert									that cores could be below spec.	(5 over, 2 under)	
inst unit) inst unit unit unit unit unit unit unit uni									Since 6.14 > 5.19, it is possible		
stst unit) 5.5 5.42 0.24 5.9 6.14 4.9 4.70 and since 4.70 < 4.90, it is also possible that cores could be below spec. ck Slough - 5.5 5.45 0.20 5.9 6.05 5.1 4.85 possible that cores could be below spec. Even though the control limits are outside the spec. limits, it is possible that all selected cores are within spec. limits. Rd Lobert 6.0 5.86 0.26 6.5 6.64 5.5 5.08 Since 5.08 < 5.5, it is likely that cores could be below spec. a - Jumpoff 5.0 4.87 0.15 5.2 5.32 4.8 4.42 it is possible that cores could be solve spec. below spec. Since 4.42 < 4.8 and 5.29 < 5.4, it is possible that cores could be below spec. ne Co. Line 6.0 - 6.4 - 5.6	Rufus - Arlington								that cores could be above spec.,	2 of 9 within	Over-Yes
Solution	(east unit)	5.5	5.42	0.24	5.9	6.14	4.9	4.70	and since $4.70 < 4.90$, it is also	spec.	
ck Slough - 5.5 5.45 0.20 5.9 6.05 5.1 4.85 Below spec. Baker 5.5 5.45 0.20 5.9 6.05 5.1 4.85 below spec. Rd Lobert 6.0 5.86 0.26 6.5 6.64 5.5 5.08 Since 5.08 5.5, it is likely that all selected cores are within spec. limits. a - Jumpoff a - Jumpoff 5.0 4.87 0.15 5.2 5.32 4.8 4.42 Since 5.08 5.5, it is likely that cores could be below spec. a counth end) 5.0 4.87 0.15 5.2 5.32 4.8 4.42 it is possible that cores could be below spec. s (south end) 5.6 5.5 5.83 5.4 5.29 below spec. s (south end) 5.6 - 6.0 5.8 5.83 5.4 5.29 below spec. s (south end) 5.6 - 6.0 - 6.4 - 5.29 below spec. s (south end) 5.8 - 5.4 5.29 below spec. s (south end) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>possible that cores could be</td><td>(6 over, 1 under)</td><td>Under-Yes</td></td<>									possible that cores could be	(6 over, 1 under)	Under-Yes
Saker Sake									below spec.		
Sake									Even though the control limits		
Baker Composition Compos	Baldock Slough -	5.5	5 45	0.20	5 0	50.5	7 1	7.85	are outside the spec. limits, it is	3 of 3 within	47.5-
Rd Lobert 6.0 5.86 0.26 6.5 6.64 5.5 5.08 Since 5.08 < 5.5, it is likely that cores could be below spec. a - Jumpoff a - Jumpoff Since 4.42 < 4.8 and 5.29 < 5.4, it is likely that cores could be below spec.	S. Baker)	1	;	9	1:5	60:	possible that all selected cores	spec.	S
Rd Lobert 6.0 5.86 0.26 6.5 6.64 5.5 5.08 Since 5.08 < 5.5, it is likely that cores could be below spec. a - Jumpoff 5.0 4.87 0.15 5.2 5.32 4.8 4.42 5.29 below spec. b Since 4.42 < 4.8 and 5.29 < 5.4, it is possible that cores could be below spec. Since 4.42 Since 4.42 < 4.8 and 5.29 < 5.4, it is possible that cores could be below spec. B Since 4.42 Since									are within spec. limits.		
a - Jumpoff Since 4.42 < 4.8 and 5.29 < 5.4, it is possible that cores could be 5.6 5.56 0.09 5.8 5.83 5.4 5.29 below spec. Table 4.3 for more detail.	Forge Rd. – Lobert Rd.	0.9	5.86	0.26	6.5	6.64	5.5	5.08	Since 5.08 < 5.5, it is likely that cores could be below spec.	1 of 6 met spec. (5 under)	Yes
s (south end) 5.0 4.87 0.15 5.2 5.32 4.8 4.42 it is possible that cores could be 5.6 5.6 0.09 5.8 5.83 5.4 5.29 below spec. Table 4.3 for more detail.	Azalea - Jumpoff										
5.0 4.87 0.15 5.2 5.32 4.8 4.42 It is possible that cores could be is pelow spec. y Intch 5.6 5.83 5.83 5.4 5.29 below spec. ne Co. Line 6.0 - 6.4 - 6.4 - 5.6 5.8 - - 6.2 - 5.4 - 5.4 - Table 4.3 for more detail.	Joe (south end)								Since 4.42 < 4.8 and 5.29 < 5.4,		
y Intch ne Co. Line 6.0	Lot 1	5.0	4.87	0.15	5.2	5.32	4.8	4.42	it is possible that cores could be	spec.	Yes
ne Co. Line 6.0 — 6.4 — 5.6 — Data not available. 5.4 — 5.4 — 5.4 — 5.4 — 5.4 — 5.4 — 6.2 — 5.4 — 6.2	Lot 2	5.6	5.56	60.0	5.8	5.83	5.4	5.29	perow spec.	(s muder)	Yes
ne Co. Line 6.0 — 6.4 — 5.6 — Data not available. 5.8 — 6.2 — 5.4 — 5.4 — 5.4 — 5.4 — 5.4 — 5.4 — 5.4 — 5.4 — 5.4 — 5.4 — 5.4 — 5.4 — 5.4 — 5.4 — 5.4 — 6.2 — 5.4 — 5.4 — 5.4 — 5.4 — 6.2 — 6.2 — 6.2 — 6.2 — 6.2 — 6.2 — 6.2 — 6.2 — 6.2 — 6.3 for more detail.	Halsey Intch									10 of 11 within	
6.0	Lane Co. Line									10 01 11 WICHIN	
Table 4.3 for more detail. 5.8 — 6.2 — 5.4 —	Lot 3	0.9		Ţ	6.4		9.9	1	Data not available.	spec.	
*See Table 4.3 for more detail.	Lot 4	5.8	I	Ĺ	6.2		5.4	I		(1 under)	
	*See Table 4.3 for m	ore detai] -								

Tables 5.4 to 5.7 also provide a direct comparison between the gradations (12.5, 6.25, 2, and 0.075 mm) for each of the six projects. These data indicate the following for each of the projects:

- 1) Wolf Creek-W. Fork Dairy Creek. The gradations from the cores are consistently higher than the upper specification limit for all sieve sizes. This project experienced considerable fat spots throughout its length.
- 2) <u>Rufus-Arlington (east unit)</u>. The gradations for the cores are consistently higher than the upper specification limit for all sieve sizes. This project did not have any major performance problems.
- 3) <u>Baldock Slough-S. Baker</u>. The gradations from the cores exceeded the upper specification limit on all sieves but the 0.075 mm. The project exhibited some isolated areas of raveling/fat spots.
- 4) <u>Forge Rd.-Lobert Rd.</u> The core gradations were at the upper specification limit except for the 6 mm sieve (which exceeded the limit). The project exhibited some isolated areas of raveling/fat spots.
- 5) Azalea-Jumpoff Joe. The core gradation exceeded the upper specification limit on the 6 and 2 mm sizes. This project was low in asphalt initially, then fog sealed. It was in good condition during the surveys.
- 6) <u>Halsey Intch.-Lane Co. Line</u>. The gradation of the cores exceeded the upper specification limit on the 12.5 and 6 m sieves. This project exhibited considerable shoving in the southbound lanes.

All cores were trimmed to remove cut surfaces before extracting the asphalt and performing a gradation test. In all cases, the gradation of the cores was finer than the QC data. However, the data indicates there is no direct correlation between gradation and performance. Since all of the cores were sampled in known problem areas, further investigation is necessary to determine if controlling the aggregate at the cold feed is not adequate to ensure a specification product.

Table 5.8 provides a similar comparison between the asphalt content based on QC data and extractions from cores. The results suggest the following for each of the projects:

- 1) Wolf Creek-W. Fork Dairy Creek. Five of the 12 extractions were within specification (five over and two under). This, combined with the finer gradation, may have contributed to some of the observed problems.
- 2) Rufus-Arlington (east unit). Only two of the nine core extractions were within specification (six over, one under). The higher asphalt content and finer gradation does not explain the good performance of this project.
- 3) <u>Baldock Slough-S. Baker</u>. All asphalt contents were within specification. This, together with the generally good gradation, could explain the good performance on the project, but does not explain the isolated areas of raveling/fat spots.

- 4) <u>Forge Rd.-Lobert Rd.</u> Only one of six core samples was within specification. All of the non-specification material was low in asphalt content. This could explain some of the isolated raveled areas, but not the fat spots.
- 5) <u>Azalea-Jumpoff Joe.</u> All core results were out of specification (low asphalt content). This was somewhat surprising since part of the project was fog sealed after construction to correct low asphalt contents during construction. This treatment was apparently sufficient to prevent early distress along the project, despite the low asphalt contents measured on the cores.
- 6) <u>Halsey Intch.-Lane Co. Line</u>. Ten of 11 cores were within specification on this project. The southbound lane (with the higher design a/c) has experienced considerable problems. The asphalt data alone does not explain the cause of the problem.

The project data, however, does show that the core results are often out of specification. This suggests the QC program needs to be reevaluated. Control of the aggregate at the cold feed and the asphalt using plant meters may not be adequate. Equally important, the limited data set show no correlation between gradation and asphalt content and field performance. This, however, does not mean these factors are not related to field performance. Other factors such as field moisture content, mix temperature, and haul distances may have contributed to some of the observed problems.

5.4 DEVELOPMENT OF IMPROVED F-MIX PAY FACTORS

F-mix pay factors were first identified through the literature review and expert survey. An operating characteristic (OC) curve analysis was then performed to help evaluate the distribution of risk between buyer and seller. This section presents the recommendations for new weighting factors for F-mixes.

5.4.1 Factors to Include

After collecting information from the literature, the expert survey, and follow-up interviews, findings indicate that asphalt content and aggregate gradation are critical pay factors. The key question with gradation, though, is which sieve sizes to include. Initially, a reduction in the number of sieve sizes used was considered, but feedback in the follow-up interviews suggested that this was not a good idea. Reducing the sieve sizes monitored would lead to increased variability in the final product. Next, adding 0.425 mm (#40) as a pay factor was considered. The QA data indicates that contractors are consistently meeting the specifications for 2 mm (#10) and 0.075 mm (#200) so it seems unnecessary to reintroduce the 0.425 mm sieve.

Moisture is important but commonly used methods of moisture content measurement are not reliable. The pay factor should also reflect the variability in the test method. Furthermore, the upper limit of 0.8% does not appear to relate to field performance (Note: the upper limit for moisture content is currently 1.10%). This issue may need further investigation.

Mix temperature is also very important. However, no state agency currently uses this as a pay item. Initial reaction to including mix temperature as a pay factor was negative, but this reaction

seemed to be linked to the difficulty of administering the requirement rather than lack of agreement that it is important enough to include. It seems to make sense to include both mix and laydown temperatures, and to require the contractor to maintain process control charts for these factors, and to use their data to determine the pay factor for this component. It could be an additional step toward payment based on contractor process control data.

The most critical change that must be made is to eliminate compaction as a pay factor for open-graded mixes. This is because the contractor currently receives 100% pay for an item not controlled. As a result, it will be necessary to change the factor weightings for the remaining factors. This is discussed in a later section of this chapter.

5.4.2 OC Curve Analysis of Pay Factor Schedule

Some amount of uncertainty is always present in the calculation of pay adjustments. Not only is there inherent variability in the sampling process, but there will be some error in the measurement as well. Operating characteristic (OC) curves can be used to evaluate the distribution of risk between buyer and seller.

Weed has developed an interactive software package, OCPLOT, to assist in OC curve analysis of pay adjustment for road construction (Weed 1995). Because OCPLOT requires a pay adjustment equation, an equation was estimated from Oregon's pay schedule. Three equations were estimated and analyzed using OCPLOT, for sample sizes 5, 10, and 70. Although the results of the analyses vary with sample size, for every sample size OCPLOT found ODOT's schedule to be <u>unduly generous</u> in providing bonuses. For example, with a sample of 70, the following expected pay factors were computed:

Percent Defective		Average Pay Factor
0		1.05
5	Acceptable Quality Level (AQL)	1.027
10		0.995
15		0.959
20		0.919
25		0.878
30		0.841
35	Rejectable Quality Level (RQL)	0.805
40		0.762

Notice that for material that is just at the AQL of 5% defective, an average pay factor of 1.027 can be expected. In other words, almost 3% bonus will be paid for work that should receive only the contract price. With smaller sample sizes, the discrepancy is greater. These three estimated pay equations and their calculated pay factors are provided along with the pay factors from ODOT's schedule in Appendix E. Also provided are the OCPLOT results.

These results are consistent with findings on analyzing the federal schedule of pay adjustment, which was the basis for Oregon's schedule (Weed 1995). The FHWA (WFLD) revised its pay adjustment schedule for its 1992 specifications. Oregon DOT evaluated the new pay schedule,

but decided not to adopt it. Other changes in the new schedule include the requirement for larger sample sizes for full bonus potential, the addition of category II pay factors for constituents with less impact on performance, and a lower AQL.

5.4.3 Factor Weights in Composite Pay Factor Calculation

In calculating the composite pay factor (CPF) for asphalt pavement, Oregon weighs the compaction value at 40%. For F-mixes, the practice has been to assign a value of PF = 1.0 for compaction. The effect is to narrow the range of pay factors from 0.85 to 1.03, instead of 0.75 to 1.05, as for dense-graded mixes with the same level of defects. This limits both the possible penalty and bonus.

ODOT's acceptance policy provides that the agency can require the contractor to remove, at the contractor's expense, material for which the CPF is lower than 0.75. Because the rejection criteria is based on CPF rather than percent within limits or percent defective, the error associated with setting the compaction PF equal to 1 could result in accepting material that falls below rejectable quality level. For instance, if all other constituents receive pay factors just below 0.75, the compaction pay factor could pull the CPF above rejection level.

Oregon should use individual factors for aggregate gradation, asphalt content, and moisture to calculate the composite pay factor. Reducing the number of sieves monitored could lead to increased variability in the final product. It is suggested that ODOT explore the possibility of including mix temperature as a factor in the near future. Three alternatives are given. Initially, the composite pay factor would not include temperatures, and the recommended weights for the constituent factors would be as listed in Table 5.9.

Table 5.9: Recommended Initial Pay F	Pactors.
--------------------------------------	----------

Constituent	Existing	R	ecommended Weigh	ts
Constituent	Weight	Alternative 1	Alternative 2	Alternative 3
1" (25 mm)	1	0	0	0
3/4" (19 mm)	1	9	12	5
1/2" (12.5 mm)	1	9	12	5
1/4" (6.25 mm)	5	15	12	15
#10 (2 mm)	5	15	12	15
#40 (0.425 mm)	3	0	0	0
#200 (0.075 mm)	10	15	12	20
Moisture content	8	9	9	10
Asphalt content	26	28	31	30
Compaction	40	0	0	0

5.4.3.1 Basis for Alternative 1

Asphalt content has been consistently shown to impact pavement performance. Survey results indicate that it was the most significant factor contributing to performance. Analysis of the QC data indicated mixed results in achieving specifications for asphalt content, and core results indicated difficulties with asphalt content. For these reasons, a significant weight of 28% is recommended for asphalt content.

The current pay factor weights include a 1% weight for the 25 mm (1 inch) sieve. Since the QC data indicates that there is virtually no variation on this sieve, its usefulness as a pay factor is very limited. Therefore, this sieve should be eliminated in calculating the composite pay factor. It was also reasoned that the 19 mm (3/4 inch) and the 12.5 mm (1/2 inch) sieves were of minor importance compared to the 6.25 mm (1/4 inch), 2 mm (#10) and 0.075 mm (#200) sieve sizes, which were more significant.

It is recommended that the weights be adjusted to encourage contractors to increase their process capability. The 19 mm (3/4 inch) and 12.5 mm (1/2 inch) factors should be increased to 9, while the more significant 6.25 mm, 2 mm and 0.075 mm sieve weights should be increased to 15. By placing a higher weight on these factors, contractors will be encouraged to monitor the processes more closely.

The 0.075 mm (#200) sieve was identified for emphasis by calculating a measure of process capability known as C_{pk} . C_{pk} is a performance index which reflects the current process mean's proximity to either the upper specification limit or lower specification limit. This statistic is calculated by the following equation:

$$C_{pk} = \min \left[\frac{\overline{X} - LSL}{3s}, \frac{USL - \overline{X}}{3s} \right]$$
 (5-1)

where:

s = sample standard deviation

 \overline{X} = arithmetic mean

LSL = lower specification limit USL = upper specification limit

A value of C_{pk} less than 1.0 indicates that one should expect more than a small percentage of the values for this factor would be outside the specification limits. Note that C_{pk} can be influenced by either changes in the numerator (shifts in the process mean) or changes in the denominator (shifts in the process standard deviation). <u>ALL</u> of the C_{pk} values for the 0.075 mm (#200) sieve were less than 1.0. This indicates a significant opportunity for improvement. Similarly, the 19 mm (3/4 inch) and 2 mm (#10) sieves showed some difficulties with process capabilities (some C_{pk} values less than 1.0) and, therefore, should not be removed from consideration. Details of the C_{pk} analysis are found in Appendix F.

Moisture content was listed by some survey respondents as a contributor to performance. However, commonly used methods of measuring moisture content are not reliable and there is no clear link between moisture content and performance. Therefore, a minor weight of 9% is recommended for moisture content.

In addition to making these changes in factor weights, ODOT should consider rewriting their specification to use a 5 mm (#4) sieve rather than the 6.25 mm (1/4 inch) sieve.

This change would be consistent with the practices of other states and would allow cross-state information sharing to be more effective.

5.4.3.2 Basis for Alternative 2

Alternative 1 assumes that the mix design is similar to a recipe where the quantities and combination of ingredients are critical to a quality product. There was some debate among the TAC members as to whether this was indeed the case. It was requested that a second alternative be considered that merely spread the weight that was previously assigned to compaction evenly across the other factors.

5.4.3.3 Basis for Alternative 3

This alternate places the same relative importance on gradation and asphalt content as the current pay schedule. Additional emphasis is placed on the 6.25 mm, 0.425 mm and 0.075 mm sieve as compared to Alternative 1. Alternative 3 places the most emphasis of all alternatives on the 0.075 mm sieve. Also, asphalt content and moisture content weights are increased. Intuitively, this alternate would best relate to the findings from the literature and the survey of users.

5.5 POTENTIAL IMPACT OF PROPOSED PAY FACTORS

The Technical Advisory Committee requested an analysis of prior projects with recommended weight changes. This analysis is found in Appendix G. However, please note that this analysis is for information purposes only and conclusions should NOT be drawn from this analysis. The intended purpose of using pay factors is to influence contractors to focus on improving performance on factors that impact pavement performance. Therefore, one cannot assess the impact of a pay factor change without the corresponding influence on contractor behavior.

Figure 5.1 shows the distributions of the composite pay factors for the 208 production lots available for this analysis. Figure 5.2 shows the same information, but focuses on narrower cell ranges between 0.90 and 1.05. Finally, Table 5.10 presents CPF comparisons for projects included in the field survey. Appendix G shows the same information for all 208 lots. As shown in both Table 5.10 and Appendix G, Alternatives 1 and 2 slightly decrease the average CPF while lowering the minimum CPF and raising the maximum CPF. Alternative 3 increases the average CPF while lowering the minimum and raising the maximum CPF.

Contractors should be strongly encouraged to monitor performance on these factors with statistical process control charts. In addition, during this first phase of implementation, contractors should be required to show documentation (control charts) of their actual mix temperature and laydown temperature data. These numbers would not be used to calculate pay factors but, rather, would verify use of temperature readings for process control. It is our understanding that contractors are currently collecting data on each of these factors, but that they are not currently using statistical control charts to help them identify situations where corrective action may be necessary. In the implementation plan discussed in the next chapter, it is recommended that training be made available to contractors on the use of statistical process control.

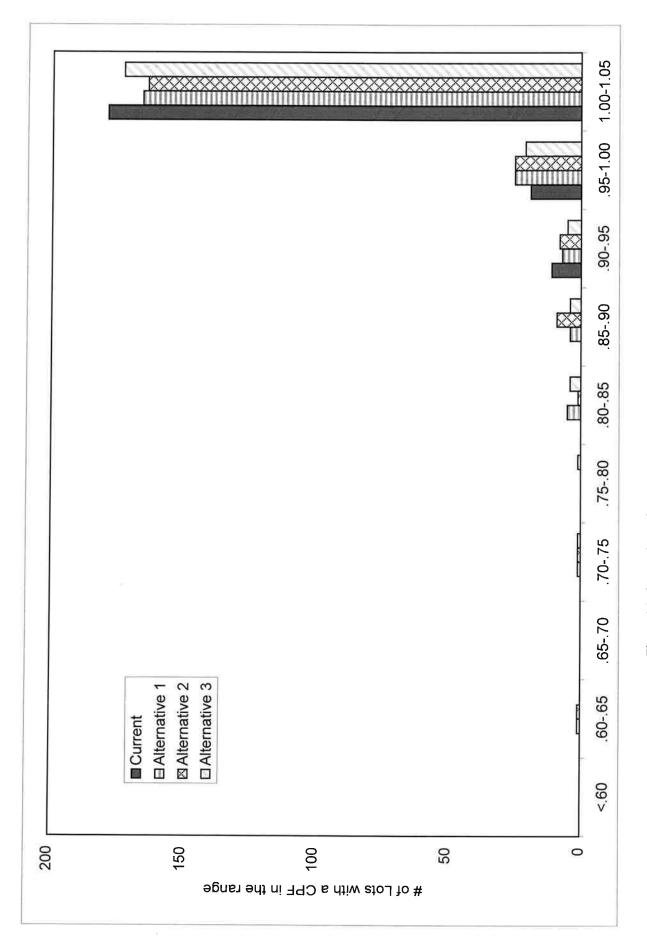


Figure 5.1 Comparison of CPF Values for Alternatives Considered

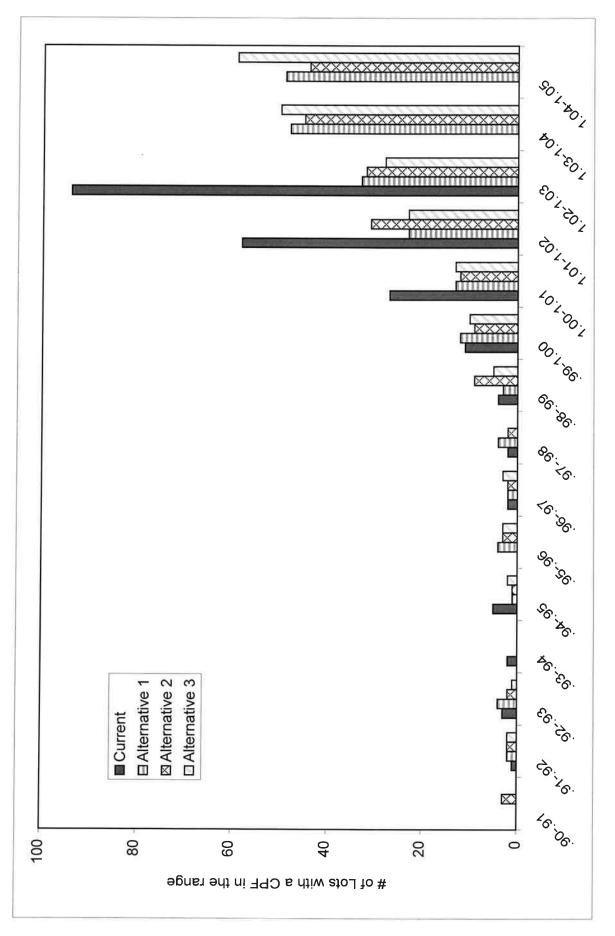


Figure 5.2: Detailed Comparison of CPF Values between CPF=.90 and CPF-1.05

Table 5.10: CPF Comparison for Field Study Projects

	1 1263	11220	11572	11015	10053	112458	11468	11468	10949	11256	11573	10462	10462	10462	10462	11065	11065	10941	11294	11294	10874	10939	10930	10930	11344	11344	N _O	CONT
	AND CLAN FOR DAILY CL	Wolfor WEST Drive	Willowdale - Oralle Road	ard Inten		Sunset Highway - Pacific Hwy	Sunset Highway - Pacific Hwy	Sunset Highway - Pacific Hwy	Rufus - Arlington (E Unit)	Rufus - Arlington (W Unit)	Powell Butte - Prineville Airport	Murphy Rd - Lava Butte	Jumpoff Joe Cr - N Grants Pass	Jumpoff Joe Cr - N Grants Pass	Hayesville - Battle Cr	Halsey Int Lane Co. Line, Lot 4	Halsey Int Lane Co. Line, Lot 3	Forge Rd - Lobert (S Unit)	Corbett Intch - Multnomah Falls	Baldock Slough - S Baker Intch	Baldock Slough - S Baker Intch	Azalea Jumpoff Joe	Azalea Jumpoff Joe	SECTION				
	20301	1000	128/7	53015	1011/	31613	4474	2401	43931	75238	19944	1644	5596	7279	6303	51608	16399	37613	38064	25528	8629	37511	2139	45596	79703	6771	F MIX A	SNOT
	-6824	70112	4659	14208	78/1	25414	3872	1566	0	53795	5022	1212	2311	-1017	3372	27961	0	-7696	8140	4325	4459	-62861	1202	16552	46148	-12714	F MIX ADJUST (\$)	PRICE
	σ	-		د .		ω	2	_	-	ω	_	თ	G	4	ω	2	_	-	4	ω	_	4	2	_	2	-	Ö	덛
	56	4	: =	65	19	29	თ	ω	87	150	20	ω	1	13	13	101	33	77	75	52	17	75	GI	91	80	7	LOTS	# SUB
	1.05	1.05	1.05	1.05	1.05	1.05	1.01	1.04	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	_	
	1.05	1.04	1.04	1.03	1.04	1.03	1.05	1.00	0.85	1.05	1.05	1.03	1.05	1.05	1.04	1.03	0.91	0.84	1.05	1.04	1.01	0.89	1.04	1.01	1.02	1.04	3/4	
	1.01	1.04	0.85	0.97	1.01	0.82	0.97	1.03	0.89	0.98	1.05	0.99	1.04	1.04	0.93	0.98	0.85	0.00	0.99	0.93	0.82	0.97	0.99	1.00	0.90	0.97	1/2	
	1.04	1.03	1.05	1.03	1.04	1.05	1.01	0.95	0.98	1.04	1.05	1.05	1.04	1.03	1.05	0.98	0.84	0.93	1.00	0.94	1.03	1.02	1.04	0.93	0.95	0.00	1/4	
	1.05	1.05	1.05	0.99	1.05	1.04	1.03	0.99	1.01	1.05	1.00	1.05	1.05	1.05	1.04	1.04	1.01	1.05	1.04	1.04	1.04	1.05	1.05	1.05	1.05	1.05	10	PAYF
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.05	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	40	PAY FACTORS
	1.05	1.05	1.02	1.03	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.03	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	200	RS
	0.94	1.05	1.05	1.02	1.04	1.05	1.05	1.05	1.00	1.05						1.04	1.00	0.97	1.00	1.00	1.02	1.00	1.05	1.02	1.04	0.92	ASPI	
Average Minimum Maximum	0.93	0.00	1.05	1.05	1.05				0.97				1.04								1.05	0.00	1.05	1.05	1.05	1.05	NO!	
mm ge	1.00	1.00				1.00		1.00									1.00				_		_			1.00	ASPH MOIS COMP	
1.005 0.930 1.027	0.989	0.943	1.023	1.014	1.025	1.022	1.024	1.018	1.000	1.026	1.009	1.025	1.014	0.994	1.020	1.021	1.000	0.989	1.009	1.007	1.017	0.930	1.027	1.014	1.019	0.941		Current
1.001 0.848 1.042	1.003	0.951	1.027	1.018	1.041	1.022	1.034	1.018	0.980	1 040	1.022	1.040	1.033	1.010	1.029	1.027	0.968	0.896	1.018	1.005	1.013	0.915	1.042	1.016	1.016	0.848	CPF !	ΔŢ
0.998 0.860 1.040		0.951					1_033		0 971		1 023								3 1.017							0.873	CPF	ALT 1 ALT 2
1.006 0.849 1.045			1.034																							0.849		DAITS

After the contractors have demonstrated an ability to document their performance on maintaining mix and laydown temperatures within specifications, it is recommended that ODOT investigate the best method to incorporate temperatures in the quality control/quality asurance program. The process control data collected during the first phase of this implementation can be used to further assess the impact of mix and laydown temperature on pavement performance. Provided that this analysis indicates the expected relationship between mix and laydown temperatures and performance, the composite pay factor would include temperatures and the recommended weights (similar to alternate 3) for the constituent factors as listed in Table 5.11.

Table 5.11: Recommended Pay Factors Including Temperatures

Constituent	Weight
3/4" (19 mm)	5
1/2" (12.5 mm)	5
1/4" (6.25 mm)	15
#10 (2 mm)	15
#200 (0.075 mm)	20
Moisture content	10
Asphalt content	24
Mix temperature	6

5.6 SUMMARY

This chapter evaluated information from the literature review, the field survey, and the laboratory study, and recommended which factors affect performance, which factors should be controlled during production, and how weights should be improved for F-mix pay factors.

Specifically, the following emerged from the evaluation of findings:

- 1) Survey responses and recent literature suggest that asphalt content and aggregate gradation are the most important factors related to performance of porous pavement.
- 2) The results of the field survey and laboratory test program suggest that asphalt content and aggregate gradation may affect short-term and long-term performance of F-mixes. They were not clear with respect to the importance of mix moisture on performance.
- 3) If processes are effectively managed using statistical process control, control limits should <u>not</u> be outside specification limits. Control limits were found to be <u>outside</u> specification limits 93% of the time for 12.5 mm (1/2 in.) sieve, 64% of the time for the 6.25 mm (1/4 in.) sieve, 7% of the time for the 2 mm (#10) sieve and the 0.075 mm (#200) sieve, 50% of the time for asphalt content, and 36% of the time for moisture content.
- 4) QC data results were consistent with core results for the 12.5 mm sieve, the 6 mm sieve, and asphalt content. Results from the two sources were <u>not</u> consistent for the 2 mm sieve and the 0.075 mm sieve.

- 5) In all cases, the gradation of cores was finer than the QC data. All of the cores, however, were taken from known problem sites. Further investigation is necessary to determine if controlling aggregate at the cold feed is not adequate to ensure a specification product.
- 6) Three alternatives for pay factor weights were analyzed. It is recommended that Alternative 3 weights be used, since it most closely relates to the findings from the literature review and expert survey. As shown in Appendix G, applying these weights to the 208 production lots available resulted in shifting the average composite pay factor from 1.012 to 1.016.

6.0 IMPLEMENTATION PLAN

The findings from this study should be implemented in the following way:

- 1) Specification Committee. The results of this study should be turned over to the ODOT Specification Committee as soon as possible. This will allow decisions to be made relative to implementation of these recommendations at the fall meeting. Pilot implementation could then begin as early as the 1999 construction season.
- 2) Field Test of New Specification. The first phase of the control and pay factor recommendations could be included in pilot projects for the 1999 season. This includes implementing the pay factor changes documented in Table 5.9, as well as measuring mix temperature to see if it should be included as a pay factor. Use of these weights to calculate a composite pay factor for porous pavements will allow the pay factor to reflect the factors that most influence performance in porous pavements.
- 3) Training in QC/QA. Agency and contractor personnel should consider training in order to understand the value of using control charts for process control, in addition to training on the mechanics of using control charts. Both agency and contractor personnel should be trained (through the Certified Asphalt Technician Program of APAO) in the implications of the new QC/QA specifications prior to the full implementation.
- 4) Monitoring Projects. Projects constructed with the new specification should be carefully monitored to determine whether the pay incentives and disincentives are appropriate. If mix temperature proves to be an important factor to control, then adoption of the weighting factors given in Table 5.11 should be considered.

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

Based on the findings in this study, the following conclusions appear warranted:

- 1) Experiences of others indicate the factors to be controlled should include asphalt content, gradation, and moisture. Most agencies do not control compaction (or voids) of porous mixes.
- 2) The survey of projects in Oregon indicate, for the most part, that F-mixes perform very well. Problems were noted on some projects which included fat spots, raveling, and rutting. Some of the older projects are now beginning to fatigue crack. The results of the laboratory study suggested that the fat spots and rutting generally occurred where there was excess asphalt and/or a fine mix.
- 3) An evaluation of all data resulted in specific suggestions for factors to control (aggregate gradation, asphalt content, mix moisture, etc.) and recommendations for new pay adjustment schedules. In general, more weight was given to the finer sieves and less weight given to moisture content and asphalt content.
- 4) A plan for implementing the study findings was developed. It includes both field trials as well as training of personnel.

7.2 RECOMMENDATIONS FOR FURTHER STUDY

Recommendations for further study include:

- 1) Modifications to the current mix design process are needed to improve repeatability.
- 2) Re-evaluation of the QC/QA practices for all mixes to ensure that the use of the process is consistent with normal practices.
- 3) Continuation of training of personnel in QC/QA technologies.
- 4) Development of methods for incorporating mix and laydown temperature in pay factor calculations.
- 5) Continuation of studies to determine whether moisture can be eliminated as a pay factor.

8.0 REFERENCES

Amirkhanian, Serji N., James L. Burati, Jr., and Harish C. Mirchandani. "Effect of Testing Variability on Contractor Payment for Asphalt Pavements." *Journal of Construction Engineering & Management*, 120. September 1994. pp. 579-592.

Anderson, Keith. "Asphalt-Rubber Open-Graded Friction Course; I-5: Vancouver Vicinity." WA-RD-131.1. Washington Department of Transportation. September 1987.

Anderson, Keith. Personal correspondence (e-mail). Washington Department of Transportation. July 23, 1995.

Arkansas State Highway and Transportation Department. "A Performance Evaluation Summary of Open Graded Friction Courses in Arkansas." 1990.

Bodine, Harry. "State Will Repave Rutted Oregon 217." *The Oregonian*. March 13, 1994. p. E1.

Booth, Edward. "Some Applications of Open Graded Asphalt in South Australia." 8th AAPA International Asphalt Conference. Australian Asphalt Pavement Association. November 1991.

Bowers, David. "Performance of an Open-graded Bituminous Concrete Overlay." Connecticut Department of Transportation. 1978.

Centro de Investigation Elpidio Sanchez Marcos. "Technical Specifications on Porous Mixes." Madrid, Spain.

Chamberlain, William P. NCHRP Synthesis of Highway Practice 212: Performance Related Specifications for Highway Construction and Rehabilitation. Transportation Research Board, Washington, DC. 1995.

Colwill, Douglas, Graham J. Bowskill, J. Clifford Nicholls, and Maurice E. Daines. "Porous Asphalt Trials in the UK." *TRR 1427*. Transportation Research Board, Washington, DC. 1993. pp. 13-21.

Colwill, Doug. "The Story of Porous Asphalt." *TRL News*, Transportation Research Laboratory. February 1995.

Connecticut Department of Transportation. "Performance Observations on Open Graded Bituminous Concrete Overlays in Connecticut." Connecticut DOT. 1981.

Currie, D.T., and J.D. Bethune. "Design and Use of Open Graded Friction Course Asphalt for Road Surfacing." Country Roads Board, Victoria, Australia. 1976.

Decker, Dale. "Field Management of Hot Mix Asphalt." *Journal of the Association of Asphalt Paving Technologists*, vol. 61. 1994. pp. 636-643.

Decoene, Y. "Contribution of Cellulose Fibers to the Performance of Porous Asphalts." *TRR* 1265. Transportation Research Board, Washington, DC. 1990. pp. 82-86.

Del Valle, H.F. "Procedure — Bulk Specific Gravity of Compacted Bituminous Mixtures Using Parafilm-Coated Specimens." Chevron Research Company, Richmond, CA. 1985.

Eaton, Robert, and P.C. Marzbanian. "Structural Evaluation of Porous Pavement Test Sections at Walden Pond State Reservation." *Special Report 80-39*. U.S. Corps of Engineers. December 1980.

Elliott, Robert P., and Moreland Herrin. "Development of an Asphalt Construction Pay Schedule Based on the Value Concept." *TRR 1056*. Transportation Research Board, Washington, DC. 1986. pp. 10-20.

Elliott, Robert P., and Moreland Herrin. Asphalt QA Specifications - Influence of Significant Material Factors & Development of a Rational Payment Schedule. University of Illinois. 1983.

Emery, John. "Specifying End Results." Civil Engineering Magazine. August 1995. pp. 60-61.

Federal Highway Administration (FHWA). "Open Graded Friction Courses." Technical Advisory T5040.31. Federal Highway Administration, Washington, DC. 1978.

FHWA. "State-of-the-Art in Asphalt Pavement Specifications." FHWA-RD-84-075. Federal Highway Administration, Washington, DC, July 1984. pp. 25-82.

FHWA. "Quality Assurance in Highway Construction." FHWA-TS-89-038. Federal Highway Administration, Washington, DC. 1989. pp. 1-8.

FHWA. "Materials Control and Acceptance - Quality Assurance." FHWA-HI-93-047. Federal Highway Administration, Washington, DC. 1993.

Florida Department of Transportation. "Specifications: Sections 331, 336, and 337, Asphalt Concrete Friction Courses." Florida DOT. 1994.

Gemayel, Chaouki A., and Michael S. Mamlouk. "Characterization of Hot-Mixed Open-Graded Asphalt Mixtures." *TRR 1171*. Transportation Research Board, Washington, DC. 1988. pp. 184-192.

Georgia Department of Transportation. "Specifications: Section 828 - Hot Mix Asphalt Concrete Mixes." 1995.

Hicks, R.G., et al. "Open-Graded Emulsion Mixtures: 25 Years of Experience." *Proceedings, 6th International Conference on Low Volume Roads*. Transportation Research Board. June 1995.

Horak, E., B.M.J.A. Verhaeghe, F.C. Rust, and C. van Heerden. "The Use of Porous Asphalt on Major Roads in Johannesburg." *Proceedings 6th Conference on Asphalt Pavements for Southern Africa*. Johannesburg Roads Directorate. 1994.

Huddleston, I.J., H. Zhou, and R.G. Hicks. "Evaluation of Open-Graded Asphalt Concrete Mixtures Used in Oregon." *TRR 1427*. Transportation Research Board, Washington, DC. 1993. pp. 5-12.

Huet, M., A. de Boisoudy, J.-C. Gramsammer, A. Bauduin, and J. Samanos. "Experiments with Porous Asphalt on the Nantes Fatigue Test Track." *TRR 1265*. Transportation Research Board, Washington, DC. 1990. pp. 54-58.

Hughes, C.S. "Incentive and Disincentive Specifications for Asphalt Concrete Density." *TRR* 986. Transportation Research Board, Washington, DC. 1984. pp. 38-42.

Hunt, Liz. "Evaluation of PBA-6GR Binder for Open Graded Asphalt Concrete 1993 & 1994 Projects: Construction Report." Oregon Department of Transportation. 1995.

International Road Federation. *Contribution Towards Reductions of Traffic Noise*. Working Group on Interaction of Vehicles, Tyres and Pavement. 1992.

Irwin, Lynn. "What Are the Odds on Your Paving Project's Success?" *Roads & Bridges*. February 1994.

Kansas Department of Transportation. "Open Graded Asphalt Friction Courses, Final Report." December 1986.

Kliewer, J.E., L.D. Ilg, R.B. Leahy, and R. Dominick. "Evaluation of the Moisture Sensitivity of Open-Graded Mixes Using the Environmental Conditioning System." Transportation Research Record, paper no. 961116. 1995.

Louisiana Department of Transportation. "Specifications Section 502, Asphalt Concrete Friction Courses." 1992.

Maryland Department of Transportation. "Specifications, Section 504.04, Measurement and Payment." 1995.

Michigan Department of Transportation. "Michigan's Experience with Open Graded Asphalt Friction Courses." 1987.

National Asphalt Paving Association. "Quality Control for Hot Mix Asphalt Manufacturing Facilities and Paving Operations." NAPA Quality Improvement Series 97/86. NAPA. 1986.

National Cooperative Highway Research Program. *Open-Graded Friction Courses for Highways, Synthesis of Highway Practice 49.* Transportation Research Board, Washington, DC. 1978.

Nevada Department of Transportation. "Specifications: Section 411, Hot Mix Asphalt Pavement (Open-Graded)." 1995.

New York Department of Transportation. "Specifications, Item 15403.2005-2006." 1992.

Oregon Department of Transportation. "Standard Specifications for Highway Construction." 1991.

Oregon Department of Transportation. "Asphalt Concrete Mix Design." 1994.

Page, G.C. "Open-Graded Friction Courses: Florida's Experience." TRR 1427. Transportation Research Board, Washington, DC. 1993. pp. 1-4.

Parker, Frazier. "Alabama DOT Implementation of Hot Mix Asphalt QC/QA Procedures." *Proceedings of the Materials Engineering Conference*. October 1994. pp. 1026-1033.

Perez-Jiminez, F.E., and J. Gordillo. "Optimization of Porous Mixes Through the Use of Special Binders." *TRR 1265*. Transportation Research Board, Washington, DC. 1990. pp. 59-68.

Puangchit, Prachuab, R.G. Hicks, James E. Wilson, and C.A. Bell. "Development of Rational Pay Adjustment Factors for Asphalt Concrete." *TRR 911*. Transportation Research Board, Washington, DC. 1983. pp. 70-79.

Rebbechi, J.J. "Twelve Years History of Open Graded Asphalt Performance." 6th AAPA International Asphalt Conference. Australian Asphalt Pavement Association. January 1986. pp. 41-45.

Ruiz, Aurelia, Roberto Alberola, Feliz Perez, and Bartolome Sanchez. "Porous Asphalt Mixtures in Spain." *TRR 1265*. Transportation Research Board, Washington, DC. 1990. pp. 87-94.

Scholl, Lewis. Pay Adjustment System for AC Pavements: A 5-year Evaluation. HP&R Study #5286. Oregon DOT. October1991.

The Shell Bitumen Handbook. Shell Bitumen U.K. 1990.

Smith, Harry. "NCHRP Synthesis of Highway Practice 180: Performance Characteristics of Open Graded Friction Courses." Transportation Research Board, Washington, DC. 1992.

"Task Force on Statistical Methods Advocates Quality Assurance Techniques." *TR News 169*. Transportation Research Board, Washington, DC. November/December 1993. pp. 20-21.

Transport Research Laboratory. "Specifications for Highway Work, Section 938." United Kingdom. 1993.

van Gorkum, F. Synthesis: "Porous Asphalt Surfacing." SPRINT Workshop, The Netherlands. 1991.

van Heystraeten, G., and C. Moraux. "Ten Years Experience of Porous Asphalt Pavement in Belgium." *TRR 1265*. Transportation Research Board, Washington, DC. 1990. pp. 34-40.

Washington State Department of Transportation. "Specifications, Sec 106, Sec. 504." WsDOT. 1994.

Weed, Richard. "Adjusted Pay Schedules: New Concepts & Provisions." *TRR 986*. Transportation Research Board, Washington, DC. 1984. pp. 32-38.

Weed, Richard. "The Proof is in the Pavement." Civil Engineering. August 1993. pp. 67-69.

Weed, Richard. "Composite Pay Equations: A General Approach." *TRR 1465*. Transportation Research Board, Washington, DC. 1994. pp. 9-15.

Weed, Richard. "OCPLOT: PC Program to Generate Operating Characteristic Curves for Statistical Construction Specifications." Preprint, 74th Annual Meeting. Transportation Research Board, Washington, DC. 1995.

Younger, Krey, R.G. Hicks, and Jeff Gower. "Evaluation of Porous Pavements used in Oregon." Volume 1 and 2. FHWA-OR-RD-95-13B. Oregon Department of Transportation. 1994.

APPENDIX A QUESTIONNAIRE SURVEY

INTRODUCTION

A survey was administered to various national and international agencies inquiring about their knowledge and experience of porous pavements, as part of a larger research effort to develop an improved specification for porous pavements which would contain pay incentives and disincentives. ODOT presently has pay adjustment factors for dense-graded mixes based on an evaluation of constituents including asphalt content, gradation, compaction, and moisture content. Since this study is to establish appropriate pay factors for open-graded mixtures, the survey was designed to learn about how other agencies were dealing with specifications and adjustment factors for porous pavements.

APPROACH USED

During June and July 1995, the survey presented in Figure A.1 was mailed to the individuals listed in Table A.1. Of the 28 individuals listed in the table, 24 responded for an 86% response rate. One of the respondents did not fill out the survey but provided a letter and copies of the appropriate specifications. Thus, for all practical purposes the data provided below is compiled from 23 survey responses. Table A.1 also indicates which agencies responded to the request and if they provided copies of specifications. The names and addresses of the respondents are provided in the final section of this appendix. The initial letter requesting information is provided in Figure A.2 and the reminder letter is included in Figure A.3. The following section details the information obtained from the survey.

POROUS MIX SURVEY FORM

Name:				Address:		
Posi	tion:			-		
Pho	ne No.:			-		
Fax	No.:					
1.		you been involved uring the past five		struction of a	an open-graded aspha	ılt surface
	a.	Yes				
Г	b.	No				
	→	Briefly explain w return this questi		ot used oper	n-graded asphalt mixe	es, then
				y .		
		φ.				
2.		actors most affect ate (circle one nu			graded surface mixes	placed in
			Very Important			Not Important

Figure A.1: Survey

2

3

2

5

5

a) Asphalt content

c) Compaction

b) Aggregate gradation

d) Aggregate moisture content 5

e) Other_____

	Very Important				Not Importan
a) Rutting	5	4	3	2	1
b) Bleeding	5	4	3	2	1
c) Raveling	5	4	3	2	1
d) Other	5	4	3	2	1
4. What factor is the pr	imary cause of f	ailures?			*
a) Rutting	,				
_	h asphalt				
_	ype selection				
	e gradation				
		·			
b) Bleeding	l f . la				
☐ Too muc					
Draindov					
Other					
c) Raveling				840	
No antistr	rip				
Too little	asphalt				

Figure A.1: Survey (continued)

5) Do your sp	pecifications contain provision for pay adjustment?
┌ ☐ Yes	☐ No
5a.	What factors control the pay adjustment?
	asphalt content
	aggregate gradation
	aggregate moisture content
	compaction
	other
5b.	Please provide the basis for the pay adjusment and a copy of your current specifications for open-graded asphalt mixes.
6) Do you use	stone matrix asphalt (SMA) mixes in your state?
☐ ☐ Yes	☐ No
→ 6a.	Is there a pay incentive/disincentive provision for these mix types?
	Yes No
6b.	Please provide the basis for the pay adjustment and a copy of your current specifications for SMA.
7) Do you have courses?	e any current research dealing with open-graded asphalt surface
┌ ☐ Yes	☐ No
└ → 7a.	What is the title of the study and the scope of work?
Please return the survi	ey form to: R. Gary Hicks Associate Dean - Research & Graduate Studies Oregon State University Engineering Research Office Covell Hall 140 Corvallis, OR 97331-2406 PH: 503-737-5318; FAX: 503-737-3462

Figure A.1: Survey (continued)

Table A.1: List of Survey Recipients

Agency	Survey Sent to	Survey Response	Response from	Spec. Included	
Arizona Department of Transportation	Douglas A. Forstie	Yes	Douglas A. Forstie	No	
Arkansas State Highway Department	Jim Gee	Yes	Jim Gee	No	
California Department of Transportation	Roy Bushey	Yes	Jack Van Kirk	Yes	
Connecticut Department of Transportation	Charles E. Dougan	Yes	Charles E. Dougan	No	
Florida Department of Transportation	L.L. Smith	Yes	Gale C. Page	Yes	
Georgia Department of Transportation	Ronald Collins	Yes	Ronald Collins	Yes	
Kansas Department of Transportation	Lon S. Ingram	Yes	Rodney Maag	No	
Louisiana Department of Transportation	Jarvis J. Poche	No			
Louisiana Transportation Research Center	Harold R. Paul	Yes	Harold R. Paul	Yes	
Maryland State Highway Administration	Samuel R. Miller, jr.	Yes	Samuel R. Miller, jr.	Yes	
Massachusetts Highway Department	Leo C. Stevens, jr.	Yes	Leo C. Stevens, jr.	No	
Michigan Department of Transportation	James D. Culp	Yes	Douglas Coleman	No	
Nevada Department of Transportation	Jack Montrose	Yes	Ledo Quilici	No	
New York Department of Transportation	Paul J. Mack	Yes	Gary Frederick	Yes	
Texas State Department of Highways and Public Transportation	Katherine Hargett	Yes	Maghsoud Tahmoressi	No	
Vermont Agency of Transportation	Robert F. Cauley	Yes	Charles E. Jerd	No	
Washington Department of Transportation	Rodney G. Finkle	Yes	Robyn Moore	Yes	
Belgium	Bernard Eckmann	No			
France	Jacques Bonnot	Yes	Jacques Bonnot	No	
Delft University of Technology, The Netherlands	Andre Molenaar	Yes	P.C. Hopman	No	
Spain	Jaime Gordillo Gracia	Yes	Jaime Gordillo Gracia	Yes	
Swiss Federal Laboratories, Switzerland	Manfred N. Partl	Yes	Manfred N. Partl	No	
City of Johannesburg, RSA	Emile Horak	Yes	H. D'Amico	No	
Transportation Research Laboratory, United Kingdom	D.M. Colwill	No	D.M. Colwill	Yes	
Switzerland	K. Suter	Yes	Dieter Baer	No	
Switzerland	D. Claivaz	No			
IVT Swiss Federal Institute of Technology, Switzerland	M. Caprez	Yes	Martin Horat	No	
LAVOC Department of Civil Engineering, EPFL, Switzerland	A. G. Dumont	No			

ENGINEERING RESEARCH OFFICE

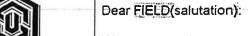
R. Gary Hicks, Director

OREGON

STATE

UNIVERSITY

140 Covell Hall Corvallis, Oregon


97331 - 2406

June 1, 1995

FIELD(name) FIELD(address)

SUBJECT:

"QC/QA Procedures for Open-Graded Mixes"

We are currently engaged in an SPR study for Oregon DOT to develop an improved specification for porous pavements, one which contains pay incentives and disincentives. Oregon has placed over 600 centerline miles of porous pavements in the past 5 years. Though the performance has generally been very good, there are isolated cases where performance has been less than satisfactory. Typical problems include:

- 1) Draindown during mixing/transport resulting in fat spots in the mix.
- 2) Early deformation due to excess asphalt and/or aggregate degradation.
- 3) Raveling due to loss of bond between the asphalt and aggregate.

ODOT presently has pay adjustment factors for dense-graded mixes based on an evaluation of constituents (asphalt content, gradation, compaction, moisture content); this study is to establish appropriate pay factors for open-graded mixes

The purpose of this letter is to request a few minutes of your time to complete the attached survey and provide us with copies of your current specifications and relevant reports which would assist us with improving the specifications for porous pavements used in Oregon.

Please do not hesitate to contact me if you have questions.

Very truly yours,

R. Gary Hicks Associate Dean Research and Graduate Studies

Telephone 541-737 5318

Fax 541:737-3462 ljd Encl.

cc: Liz Hunt

Jeff Gower

Figure A.2: Letter Sent with Survey

ENGINEERING RESEARCH OFFICE

R. Gary Hicks, Director

June 19, 1995

HEID (name)
HIEDD (address)

SUBJECT: "QC/QA Procedures for Open-Graded Mixes"

OREGON
STATE
University

140 Covell Hall Corvallis, Oregon 97331 · 2406 Dear FIELD(salutation):

We are currently conducting an SPR study for Oregon DOT to develop an improved specification for porous pavements, one which contains pay incentives and disincentives. We recently mailed you a brief survey and requested copies of your current specifications and relevant reports which might assist us with improving the specifications for porous pavements.

We realize that your time is very valuable. If you've already filled out the questionnaire and returned it, thank you for your willingness to contribute to our study. If you haven't completed the questionnaire and returned it, we would greatly appreciate you doing so by July 15. If you are unable to respond in a timely fashion, please ask an appropriate individual within your organization to respond to our request.

Please do not hesitate to contact us if you have questions. We thank you in advance for the contribution you will make to our research effort.

Sincerely,

R. Gary Hicks Associate Dean Research and Graduate Studies

Telephone 541 737 5318

Fax 541 737 3462 Kimberly D. Beaumariage Assistant Professor Industrial Engineering

Figure A.3: Reminder Letter

RESULTS

The first question on the survey inquires if the respondent was involved in the construction of an open-graded asphalt surface mix during the past five years. Figure A.4 illustrates that 16 of 22 respondents (or 72.7%) had been involved in the construction of open-graded mixes in the past five years while the remaining 6 respondents had not. Table A.2 indicates which respondents were involved with open-graded mixes, and Table A.3 provides the reasoning for not using open-graded asphalt mixes from the individuals who indicated they had not been involved with them.

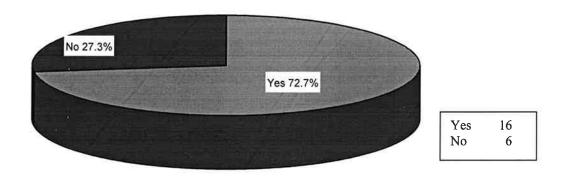


Figure A.4: Construction of Open-Graded Mixes in Past 5 Years

Table A.2: Respondents with Open-Graded Asphalt Experience

Agency	Response from
Arizona Department of Transportation	Douglas A. Forstie
California Department of Transportation	Jack Van Kirk
Florida Department of Transportation	Gale C. Page
Georgia Department of Transportation	Ronald Collins
Maryland State Highway Administration	Samuel R. Miller, jr.
Massachusetts Highway Department	Leo C. Stevens, jr.
Nevada Department of Transportation	Ledo Quilici
Texas State Department of Highways and Public Transportation	Maghsoud Tahmoress
Vermont Agency of Transportation	Charles E. Jerd
Washington Department of Transportation	Robyn Moore
France	Jacques Bonnot
The Netherlands	P. C. Hopman
Spain	Jaime Gordillo Gracia
Switzerland	Dieter Baer
City of Johannesburg	H. D'Amico
United Kingdom	D. M. Colwill

Table A.3: Reasons for Not Using Open-Graded Asphalt Mixes

Respondent	Reason			
Arkansas	Arkansas stopped using open-graded asphalt surface mix (friction course) approximately 5 years ago. After good, initial drainage performance, the voids would begin to fill, causing moisture retention, prolonged freezing, and snow and ice removal problems. Failure would be evidenced by underlying layers rutting (due to water penetration) or by raveling of the surface aggregate.			
Connecticut	 The time frame for proper placement is limited to May 15 through October 1 with a temperature requirement of 60°+ for air and base. O.G.F.C. are very sensitive to temperature and moisture during production and placement. Much of our paving on interstate roadways is now done at night where dampness and temperature could be a problem. 			
Kansas	During winter snow and ice storms, the open-graded mix sometimes filled with water and froze solid. They developed an icy surface. It took two or three times the amount of salt and number of treatments to melt the ice from the surface and within the open-graded mix.			
Louisiana	Moratorium was placed on ACFC construction in 1984 due to end of service life on older pavements (10+ years) and extensive raveling on newly constructed ACFCs.			
Maryland	We discontinued the use of open-graded asphalt surface mixes in approximately 1993 due to severe raveling of the mix during periods of severe winter weather. We now use SMA for the surface of our flexible and composite interstates and similar highways.			
Michigan	Open-graded mixtures placed in the late 70s failed to perform. After looking into failures, it would appear the open-graded mixture was okay. However, the leveling courses all failed because of stripping, caused by water pressure/pumping from the surface.			
New York	Open-graded mixes are only used for prevention of hydro-planing/wet weather accident reduction. Accident history must show wet weather related accidents. Open-graded mixes only receive limited use.			

The second survey question pertains to the factors that most affect the performance of open-graded surface mixes. A five-point Likert scale was used to express the importance of each factor with "5" indicating "very important" and "1" indicating "not important." The results for this question are shown in Figure A.5 and indicate the average level of importance of each factor. As shown in the graph, asphalt content and aggregate gradation were both indicated as important factors affecting performance. The respondents were also asked to list other factors if appropriate. Table A.4 presents the other factors listed and the corresponding respondent.

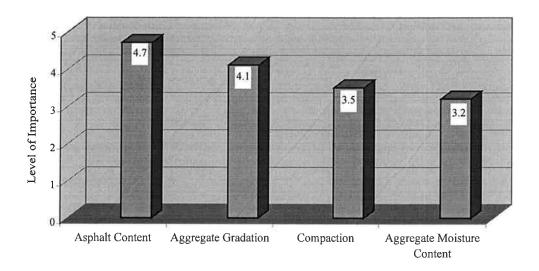


Figure A.5: Factors Affecting Performance

Table A.4: Factors that Most Affect Performance

Respondent	Factor
California	mix placement temperature
Camornia	 ambient and pavement surface temperature
Florida	 aggregate type and friction
Georgia	 use of polymers and fibers
Maryland	 stripping
Tviai y fand	 placement temperatures
Massachusetts	ambient temperature
Nevada	mixing
ivevada	weather
Washington	 consistency of product
France	asphalt binder grade
Spain	asphalt grade
Switzerland	quality of materials
Switzerland	type of binder

The third question on the survey relates to the most common types of failures in open-graded asphalt mixes. Again, a five-point Likert scale was used to express the extent of each type of failure with "5" indicating "very important" and "1" indicating "not important." The results for this question are provided in Figure A.6 and indicate the average level of importance of each factor. According to the survey respondents, raveling is the most common failure type. The respondents were also asked to list other types of failures if appropriate. Table A.5 presents the other factors listed and the corresponding respondent.

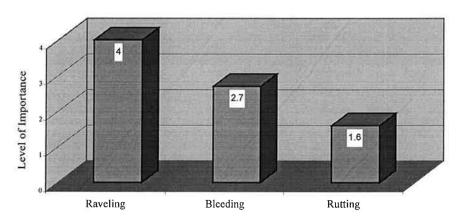


Figure A.6: Most Common Failure Types

Table A.5: Most Common Types of Failures

Respondent	Failure Type		
Florida	• low FN ₄₀		
Georgia	oxidation		
Massachusetts	 delimination 		
The Netherlands	 stripping (bottom of open graded course) 		
Spain	 clogging 		
Switzerland	 clogging 		

The fourth survey question discussed the primary cause of failures of various types. The respondents were asked to check the causes that were relevant in each case, and to list other cause of failures if appropriate. The results for this question are provided in Figures A.7, A.8, and A.9. Figure A.7 provides information on rutting, Figure A.8 on fat spots, and Figure A.9 on raveling. With respect to rutting, too much asphalt and aggregate gradation were the most frequently cited cause of rutting failures. In regard to fat spots, draindown was the most frequently given cause of failure. The most frequently cited cause of raveling failures was too little asphalt. Tables A.6, A.7, and A.8 present the other causes of failures for rutting, fat spots, and raveling, respectively.

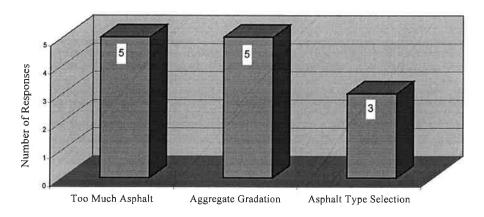


Figure A.7: Primary Factors Causing Rutting Failures

Table A.6: Primary Cause of Rutting Failures

Respondent	Cause
Massachusetts	 thickness of application
Washington	underlying pavement (structural)studded tire wear
City of Johannesburg	compaction
Switzerland	 construction quality

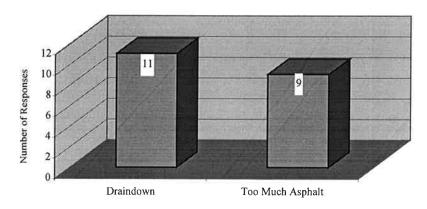


Figure A.8: Primary Factors Causing Fat Spots Failures

Table A.7: Primary Cause of Fat Spots Failures

Respondent	Cause		
Arizona	high P200		

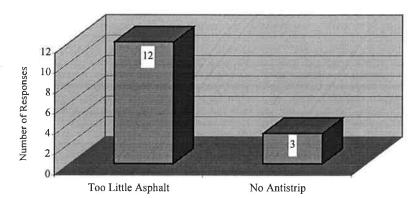


Figure A.9: Primary Factors Causing Raveling Failures

Table A.8: Primary Cause of Raveling Failures

Respondent	Cause	
Arizona	 Placed when weather is cold. 	
	Inadequate tack coat.	
California	 Mix placement. 	
7	 Ambient, and surface temperature. 	
Georgia	 Oxidized asphalt binder. 	
Maryland	 Poor construction practices. 	
iviai y land	 Aging of the asphalt binder. 	
Massachusetts	 Lay down temperature. 	
Nevada	 Moisture sensitivity of the aggregate. 	
New York	 Lift thickness too thin. 	
New TOIK	 Stripping of the asphalt mix. 	
Washington	 Late season paving or cold weather paving. 	
W domination	 Trapping water in OGAP. 	
	 Too high void content (28-30%) with very low sand content 	
France	formula.	
Tuno	Too hard binder (or too susceptible to aging, or too high	
	temperatures at the mixing plant).	
The Netherlands	 Draindown leading to localized spots of low asphalt. 	
Spain	 Lack of compaction. 	
ориш	 Mix applied at very low temperature. 	
Switzerland	 Mix and paving temperatures (e.g., overheating of binder). 	

The fifth question on the survey inquired about the use of specifications which contain provision for pay adjustment. Figure A.10 indicates that most agencies (11 agencies or 64.7%) did NOT have specifications for pay adjustment. Figure A.11 indicates the factors which were used to control pay adjustment by the six agencies that indicated they had specifications providing for it. All six agencies use some form of aggregate gradation and four of the six use asphalt content as a pay factor. Table A.9 lists other factors used for pay adjustment.

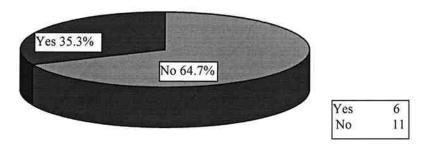


Figure A.10: Have Specifications For Pay Adjustment?

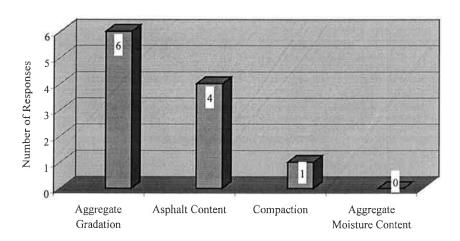


Figure A.11: What Factors Control Pay Adjustment?

Table A.9: Other Factors Used for Pay Adjustment

Respondent	Factor
Louisiana	 anti-strip - failure to add - 90%. asphalt - deviations from specifications.
Washington	weighting factor for each screen.

The sixth survey question dealt with the use of SMA mixes. Of the 21 respondents who answered this question, 11 indicated they had used SMA mixes, as illustrated in Figure A.12. Figure A.13 indicates that three agencies actually have pay provisions for SMA mixes. Table A.10 presents details provided in the survey responses concerning the use of SMA mixes.

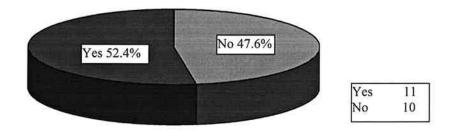


Figure A.12: Number of Respondents Using SMA Mixes

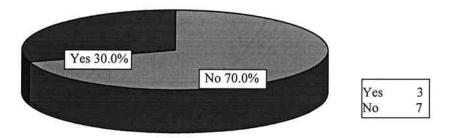


Figure A.13: Number of Respondents with Pay Provisions for SMA Mixes

Table A.10: SMA Mix Usage

Respondent	Type of Usage
Arizona	Arizona has built two test sections of SMA mixes, each one mile long.
Arkansas	Arkansas has placed SMA mixes an experimental project and is still evaluating results.
California	California has two experimental SMA projects.
Georgia	Georgia uses SMA mixes. Due to the importance of aggregate gradation in SMA mixes, the tolerances for dense graded mixes were reduced by 25%.
Louisiana	Louisiana is using SMA mixes experimentally. Four projects are complete and four more are to be let.

Finally, in question 7, respondents were asked if they were currently doing research on open-graded mixes. Figure A.14 indicates that 7 of 20 respondents to this question were doing research on open-graded mixes. These respondents included: Georgia, France, the Netherlands, Spain, and Switzerland.

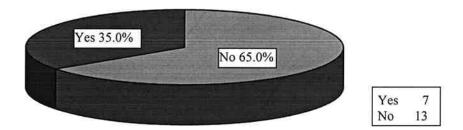


Figure A.14: Number of Respondents Doing Research on Open-Graded Mixes

Table A.11 provides the specific responses used to generate the graphs shown in this section of the appendix.

Table A.11: Raw Data from Survey Respondents

Agency	Contact	Construc Graded M Yea	Constructed Open- Graded Mix in Past 5 Years?	Fact	tors Most Affe	Factors Most Affecting Performance	nce
		Yes	No	Asphalt Content	Aggregate Gradation	Compaction	Aggregate Moisture Content
Arizona DOT	Forstie	×		5	S	3	4
Arkansas DOT	Gee		×				6.0 V T 1.0
California DOT	Van Kirk	×		5	4	4	4
Connecticut DOT	Dougan		×				
Florida DOT	Page	×		5	5	3	3
Georgia DOT	Collins	×		5	5	8	4
Kansas DOT	Maag		×				
Louisiana DOT & Development	Paul		×	5	4	2	\$
Maryland State Highway Administration	Miller	×		5	4	2	3
Massachusetts Highway Department	Stevens	×		4	4	4	5
Michigan DOT	Coleman		×				
Nevada DOT	Quilici	×		5	3	4	2
New York DOT	Frederick		×	4	5	5	2
Texas State Dept. of Highways & Transport.	Tahmoressi	×		5	4	4	m
Vermont Agency of Transportation	Jerd	×		5	4	4	2
Washington DOT	Moore	×		5	4	4	2
France	Bonnot	×		4	4	က	2
The Netherlands	Hopman	×		5		4	1
Spain	Gordillo	×		4	4	4	ĸ
Switzerland	Partl	×		4	33	2	4
Switzerland	Baer			5	5	3	
Switzerland	Horat		×	5	5	4	2
City of Johannesburg, RSA	Horak	×		5	4	4	ю
United Kingdom	Colwill	×					
				4.7	4.1	3.5	3.2

Table A.11: Raw Data from Survey Respondents (continued)

		: p	E			Factor Pri	nary Caus	Factor Primary Cause of Failures		
Account	Most Co	Most Common Failure Types	e Types		Rutting		Fat	Fat Spots	Rav	Raveling
ogency.	Rutting	Bleeding	Raveling	Too Much Asphalt	Asphalt Type Selection	Aggregate Gradation	Too Much Asphalt	Draindown	No Antistrip	Too Little Asphalt
Arizona DOT	-	5	5				×			×
Arkansas DOT	((i						
California DOI Connecticut DOT	7	2	2	×		×	×	×		×
Florida DOT	1	8	m			×		×		×
Georgia DOT	2	2	5		×	4		: ×		4
Kansas DOT								4		
Louisiana DOT & Dev.	-	1	5							×
Maryland SHA	1	3	5					×	×	(×
Massachusetts Hwy. Dept.	2	1	4							1
Michigan DOT										
Nevada DOT		3	4				×	×		×
New York DOT	1	1	5							(
Texas DOT	т	4	S			×	×	×		×
Vermont Agy. of Trans.				×				×		ļ
Washington DOT	2	3	5				×			
France	1	2	2					×		×
The Netherlands	1	1	4						×	×
Spain	1	2	5	×	×			×	×	×
Switzerland	2	4	4		×		×		!	
Switzerland	33	5	-	×		×	×	×		
Switzerland	1	3	2				×			×
City of Johannesburg, RSA United Kingdom	7	4	ю	×		×	×	×		×
	1.6	2.7	4.0	5	3	5	6	11	3	12

Table A.11: Raw Data from Survey Respondents (continued)

	Speci	Specification f	for Pay	Factors C	Factors Control Pay Adjustment	Adjustment	Use SMA Miyes	MA	Pay Pro	Pay Provisions	Current Research	Current Research on Open-Graded
Agency					Aggregate		TATI	3	INIS INI	A IVIIACS	Mixes	Kes
	No	Yes	Asphalt Content	Aggregate Gradation	Moisture Content	Compaction	No	Yes	No	Yes	No	Yes
Arizona DOT	×						×				×	
Arkansas DOT								×			1	
California DOT		×		×				×	×		×	
Connecticut DOT							×				×	
Florida DOT		×	×	×			×				×	
Georgia DOT		×	×	×				×		×		×
Kansas DOT												4
Louisiana DOT & Dev.	×			×				×	×		×	
Maryland SHA		×	×					×		×	: ×	
Massachusetts Hwy. Dept.	×						×				×	
Michigan DOT											!	
Nevada DOT	×						×				×	
New York DOT	×						×				×	
Texas DOT	×							×	×		×	
Vermont Agy. of Trans.	×						×				×	
Washington DOT		×		×			×				×	
France	×						×					×
The Netherlands		×	×	×		×		×		×		×
Spain	×							×	×			×
Switzerland	×							×	×			×
Switzerland	×							×	×			×
Switzerland	×							×	×			×
City of Johannesburg, RSA United Kingdom	×						×				×	
	13	9	4	9	0		10		7	3	13	7

LIST OF SURVEY RESPONDENTS

Douglas Forstie
State Materials Engineer
1221 N. 21st Avenue
Phoenix, AZ 85009
Phone: 602-255-7286
FAX: 602-255-8138

Jim Gee Materials Engineer P.O. Box 2261 Little Rock, AR 72203 Phone: 501-569-2185 FAX: 501-569-2400

Jack Van Kirk
Senior M & R Engineer
CALTRANS
5900 Folsom Blvd.
Sacramento, CA 95819
Phone: 916-227-7300
FAX: 916-227-7242

Charles E. Dougan
Manager of Research and Materials
Connecticut Dept. of Transportation
Office of Research and Materials
280 West Street
Rocky Hill, CT 06067
Phone: 203-258-0372
FAX: 203-529-0323

Gale C. Page
State Bit Materials Engineer
Florida DOT/ State Materials Office
2006 NE Waldo Road
Gainesville, FL 32609
Phone: 904-372-5304
FAX: 904-334-1648

Ronald Collins
State Materials and Research Engineer
Georgia Department of Transportation
Office of Materials and Research
15 Kennedy Drive
Forest Park, GA 30050
Phone: 404-363-7510
FAX: 404-363-7684

Rodney Maag
Materials Field Engineer
Kansas Department of Transportation
Docking State Office Bldg., Room 1011N
Topeka, Kansas 66612-1568
Phone: 913-296-3711
FAX: 913-296-6665

Skip Paul Materials Research Manager LTRC 4101 Gourrier Avenue Baton Rouge, LA 70808 Phone: 504-767-9124 FAX: 504-767-9108

Samuel R. Miller, Jr.
Deputy Chief Engineer
Office of Materials and Research
Maryland State Highway Administration
2323 W. Joppa Road
Brooklandville, MD 21022
Phone: 410-321-3538
FAX: 410-321-2208

Leo C. Stevens, Jr.
Research and Materials Engineer
400 D. Street
South Boston, MA 02210-1953
Phone: 617-526-8686
FAX: 617-526-8696

LIST OF SURVEY RESPONDENTS (continued)

Douglas Coleman
Bituminous Engineer
Michigan Dept. of Transportation
Materials and Technology Division
P.O. Box 30049
Lansing, MI 48909
Phone: 517-322-5672
FAX: 517-322-5664

Ledo Quilici
Principal Bituminous Engineer
Nevada Dept. of Transportation
1263 South Stewart
Carson City, NV 89712
Phone: 702-687-5520
FAX: 702-687-4846

Gary Frederick
CE II
New York State Dept. of Transportation
1220 Washington Avenue
Albany, NY 12232
Phone: 518-457-4582
FAX: 518-457-8171

Maghsoud Tahmoressi
Bituminous Engineer
Texas Dept. of Transportation/MAT
125 E. 11th Street
Austin, TX 78701
Phone: 512-465-7603
FAX: 512-302-2288

Charles E. Jerd
Bituminous Concrete Supervisor
Vermont Agency of Transportation
State Administration Building
c/o Materials and Research Division
Montpelier, VT 05633
Phone: 802-828-2561
FAX: 802-828-2792

Robyn Moore
Pavement Engineer
WSDOT
Materials Lab
P.O. Box 167
Olympia, WA 98507-0167
Phone: 360-753-7110
FAX: 360-586-4611

J. Bonnot
Technical Director
LCPC
58 Boulevard Lefebvre
75732 Paris cedex 15
FRANCE
Phone: 33 (1) 40 43 54 23
FAX: 33 (1) 40 43 54 93

P. C. Hopman
Associate Professor
Road and Railroad Lab
Delft University of Technology
P.O. Box 5048
2600 GA Delft
THE NETHERLANDS
Phone: (1) 31 15 78 4246
FAX: (1) 31 15 78 3443

Jaime Gordillo Carrera de San Jeronimo, 14 28014 Madrid SPAIN Phone: 34-1-522 64 90 FAX: 34-1-522 27 87

Manfred N. Partl
EMPA Dubendorf
Head of Section Road Engineering/
Sealing Components
Swiss Federal Laboratories
CH-8600 Dubendorf
Phone: +41-1-823 55 11

FAX: +41-1-821 62 44

LIST OF SURVEY RESPONDENTS (continued)

H. D'Amico Research and Materials Manager Laboratory Services Roads Directorate Johannesburg Administration P.O. Box 32243 Braamfontein 2017 RSA Phone: (011) 493 6386

Phone: (011) 493 6386 FAX: (011) 493 0612

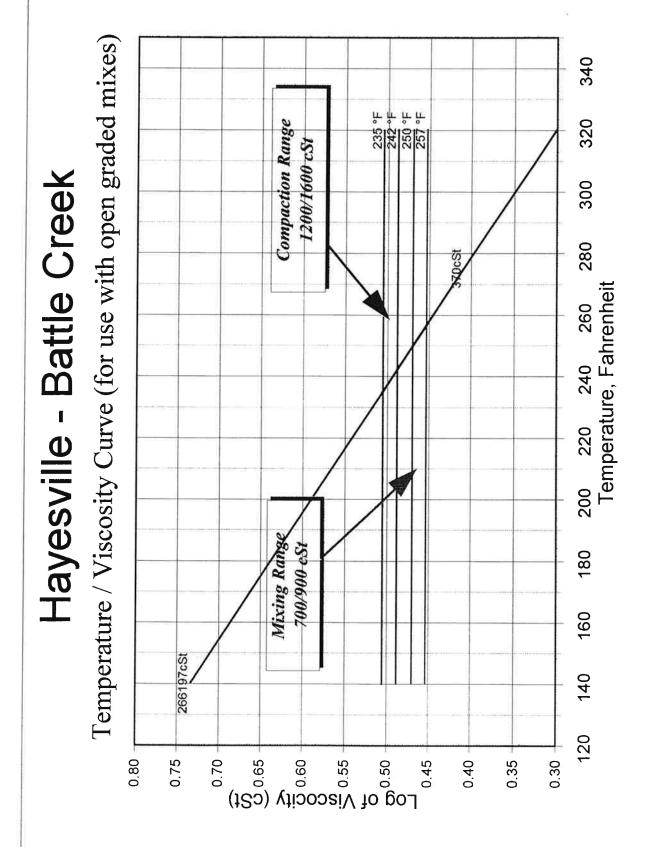
D.M. Colwill Transport Research Laboratory Old Wokingham Road, Crowthorne Berkshire RG11 6AU UNITED KINGDOM Phone: 0344 773131

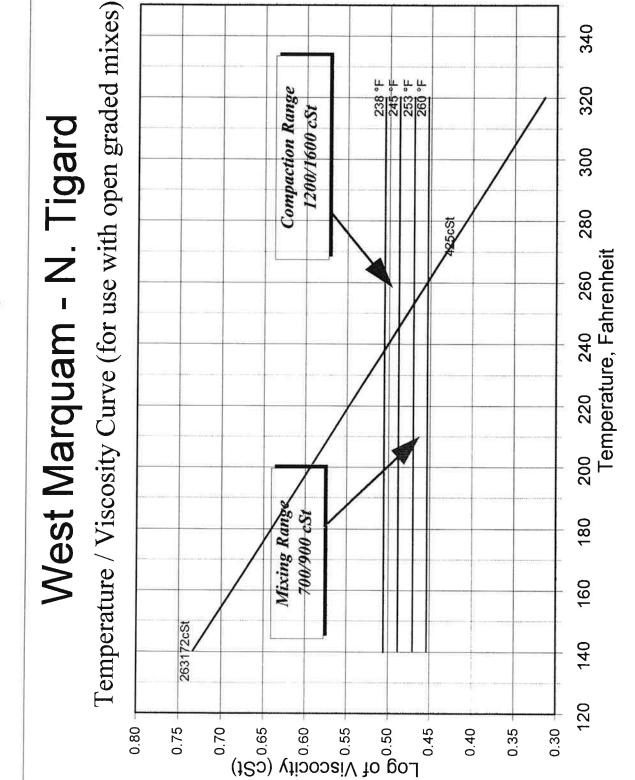
FAX: 0344 770356

Dieter Baer Wissenschaftlicher Mitarbeiter Bundesamt für Strassenbau Monbijoustrasse 40 CH-3003 Bern SWITZERLAND Phone: 031/322 94 11 FAX: 031/371 90 63

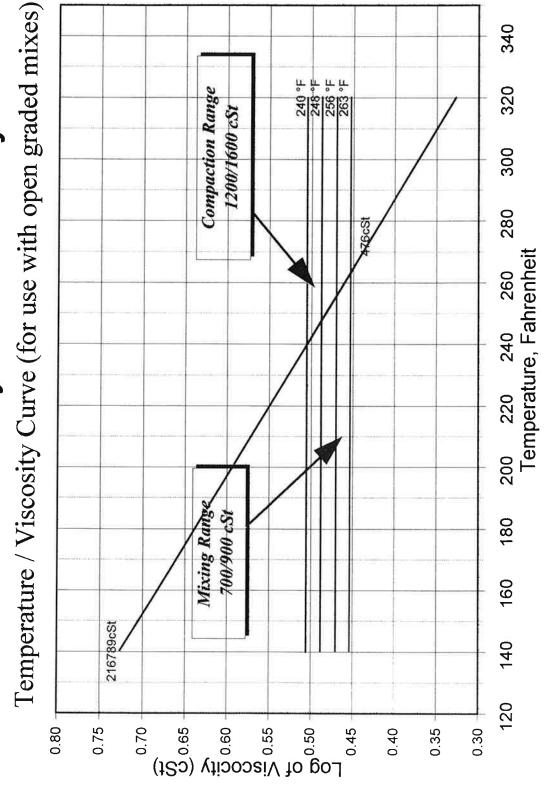
Marlin Horat Research Engineer IVT ETH-Hönggerberg CH-8093 Zurich SWITZERLAND Phone: +41-1-633 31 99

APPENDIX B

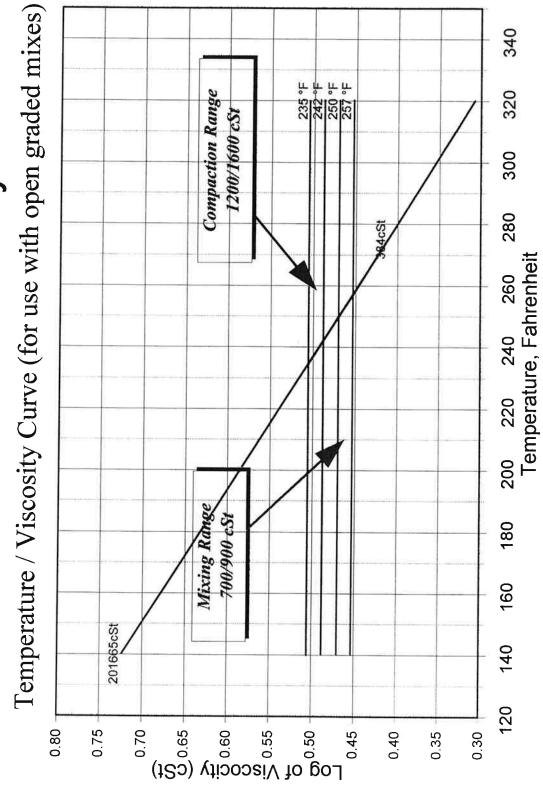

DEVELOPMENT OF MIXING AND COMPACTION TEMPERATURES FOR F-MIXES


DEVELOPMENT OF MIXING AND COMPACTION TEMPERATURES FOR F-MIXES

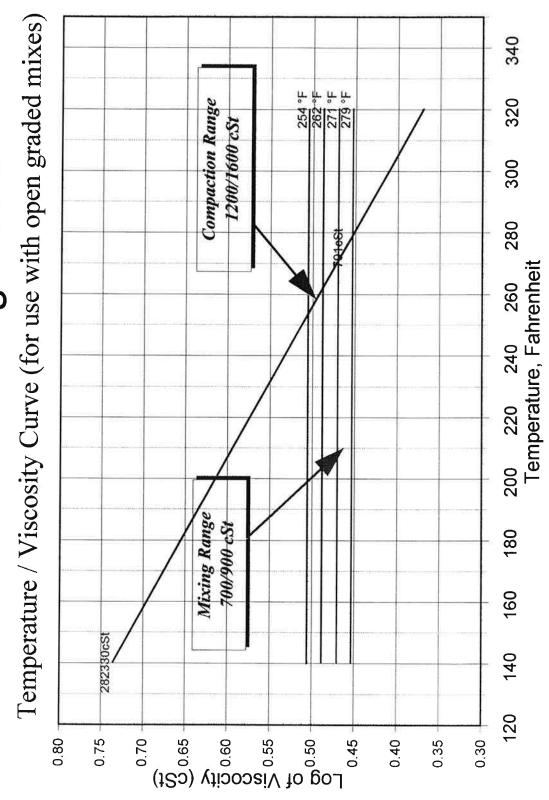
This appendix presents the temperature-viscosity curves for the asphalts used in the projects described in Chapter 3. Also included is a summary of the ODOT recommended mixing and compaction temperatures for the jobs. The temperatures are based on the following viscosity ranges for mixing and compaction (ODOT, 1994):

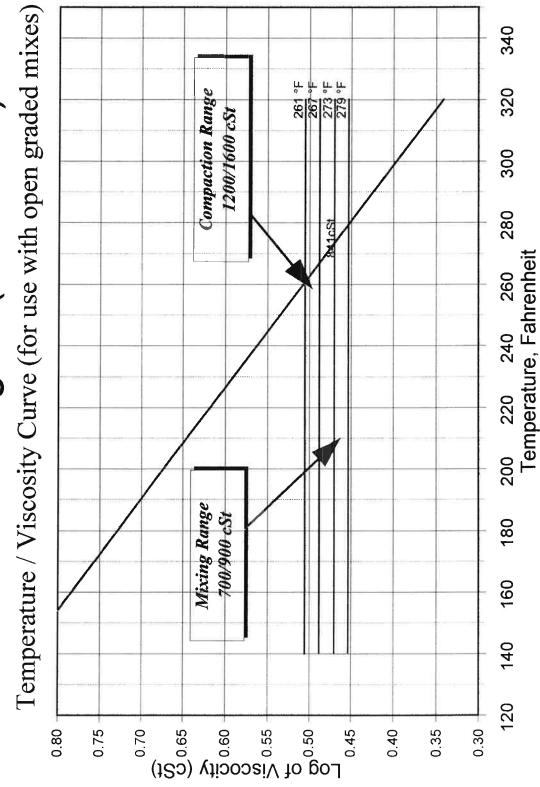

	Recommende	ed Viscosity, cs
Application	B-Mixes	F-Mixes
Mixing	150-190	700-900
Compaction	250-310	1200-1600

The importance of controlling these temperatures has been discussed in the body of the report. It directly affects the occurrence of draindown of the asphalt and fat spots in the mat.



Sunset Hwy - Pacific Hwy


Wolf Creek - W. Fork Dairy Creek

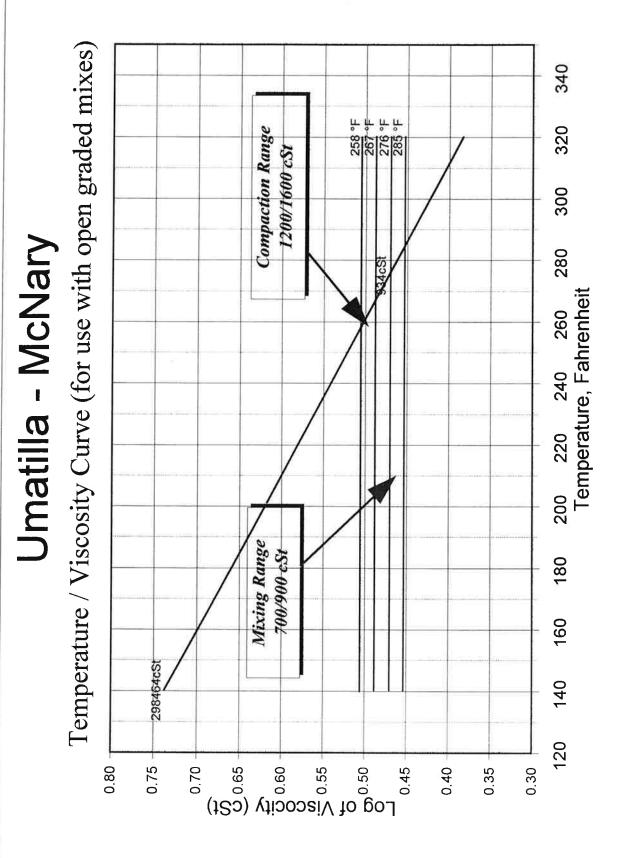

Corbett Interchange - Multnomah

Temperature / Viscosity Curve (for use with open graded mixes) 340 236 °F 244 °F 251 °F 258 °F 320 Compaction Range 1200/1600 cSt 300 280 Temperature, Fahrenheit 260 240 220 200 Mixing Range 700/900 cSt 180 160 247039cSt 140 120 0.30 Log of Viscocity (cSt) 0.80 0.70 0.35 0.75 0.40

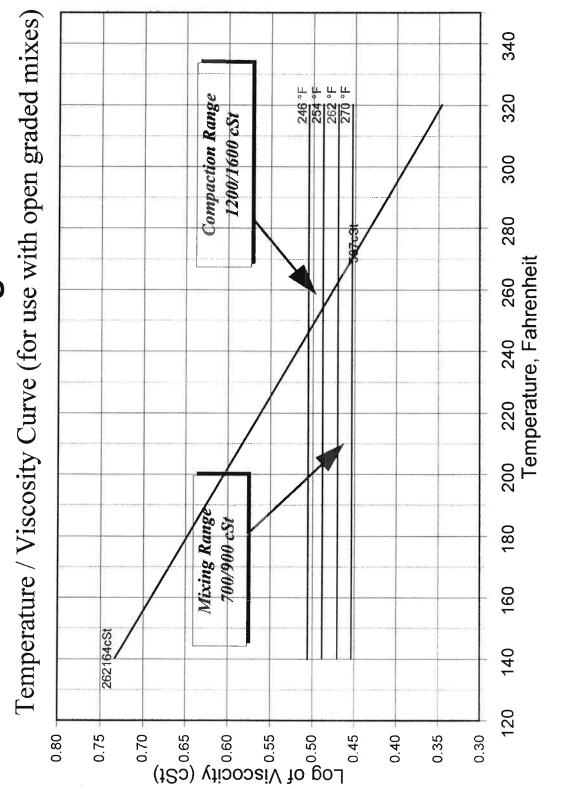
Mt. Hood - Long Prairie

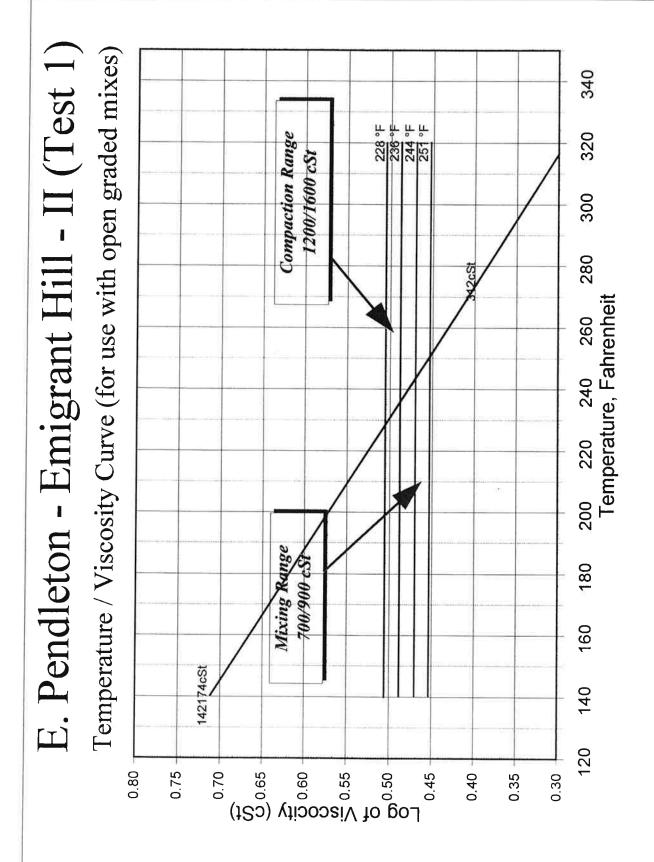
Rufus - Arlington (West Unit)

0.80


0.75

Temperature / Viscosity Curve (for use with open graded mixes) 340 236 °F 243 °F 251 °F 258 °F 320 Compaction Range Rufus - Arlington (East Unit) 1200/1600 cSt 300 280 200 220 275 Temperature, Fahrenheit Mixing Range 700/900 eSt 180 160 238972cSt 140 120 0.30 0.70 Log of Viscocity (cSt)


0.45


0.40

0.35

E. Pendleton - Emigrant Hill - I

E. Pendleton - Emigrant Hill - II (Test 2) Temperature / Viscosity Curve (for use with open graded mixes) 234 °F 239 °F 247 °F 254 °F Compaction Range 1200/1600 cSt Mixing Range 1S2 006/00L 149232cSt Log of Viscocity (cSt) 0.75 0.70 0.45 0.40 0.80

340

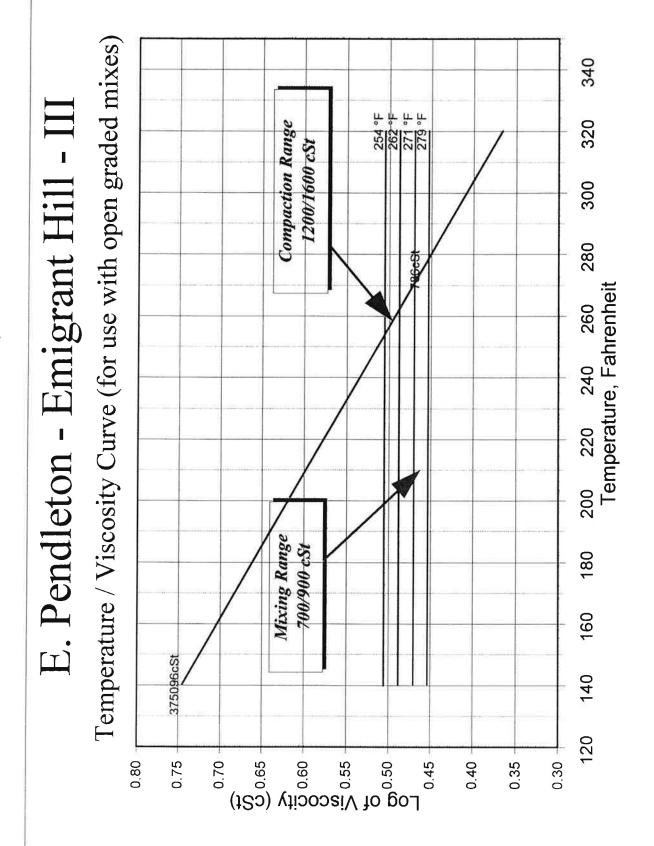
320

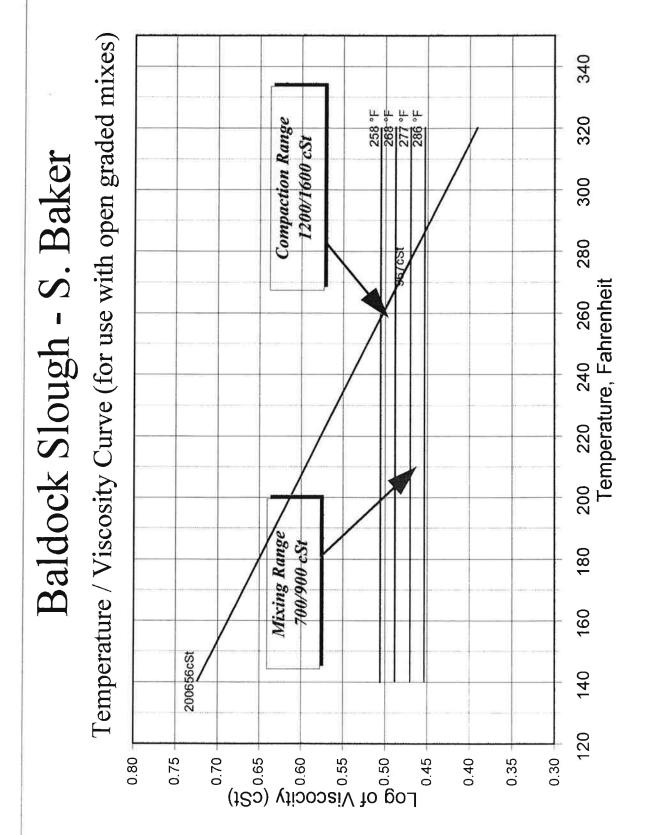
300

280

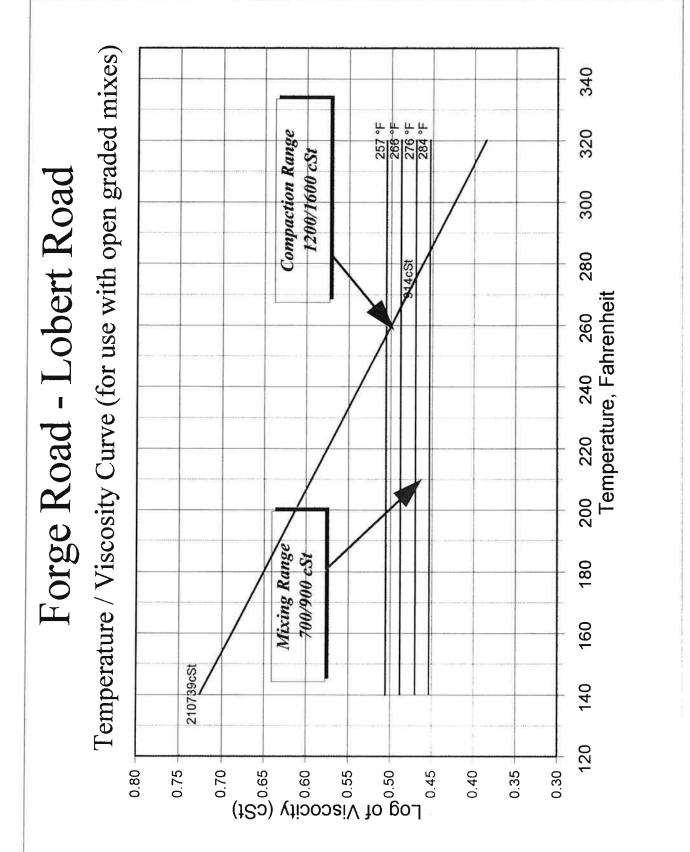
200 220 27 Temperature, Fahrenheit

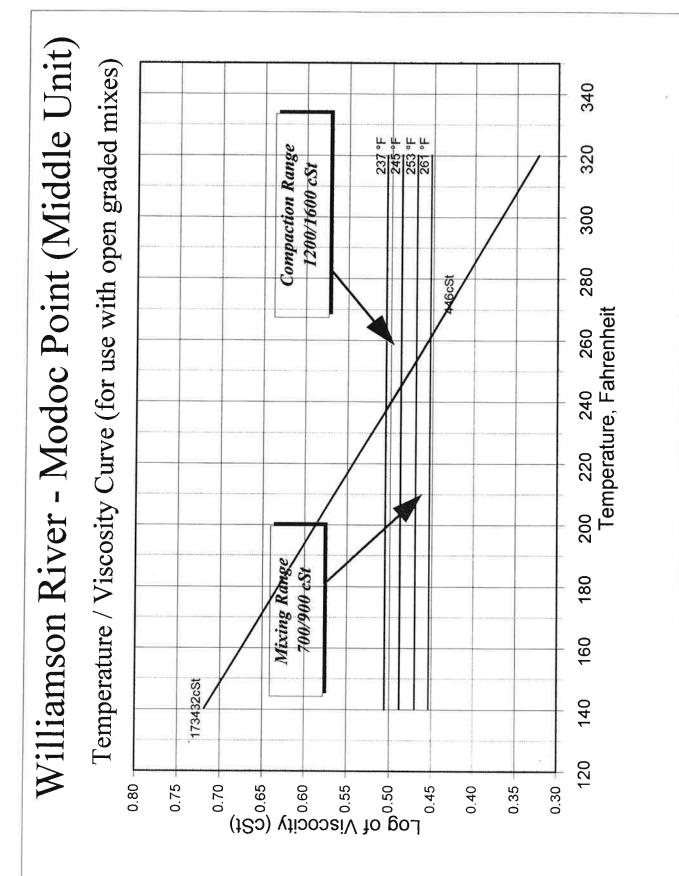
180

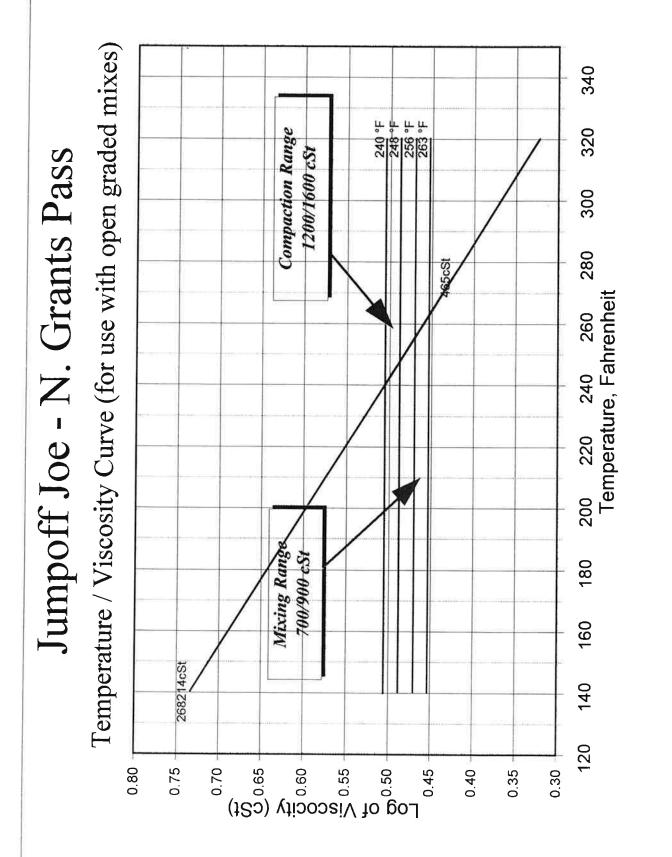

160

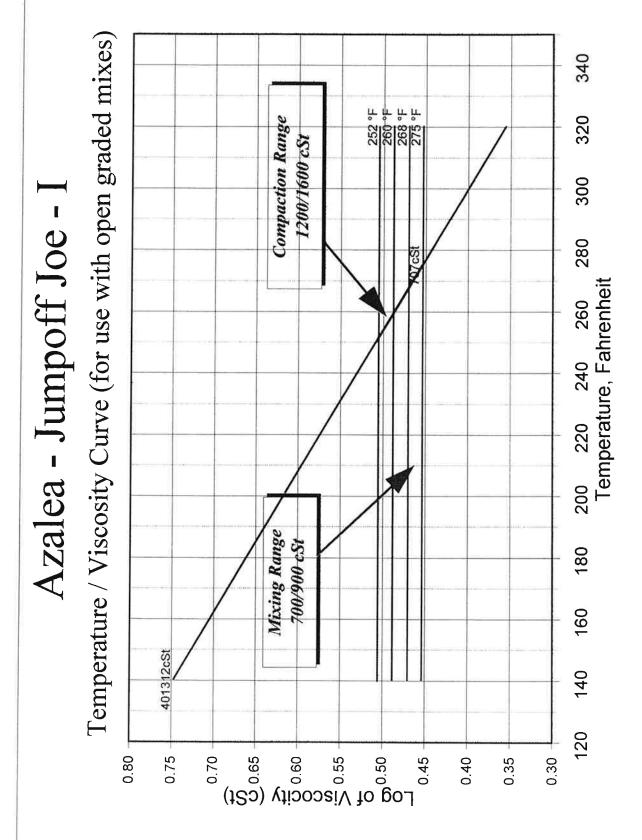

140

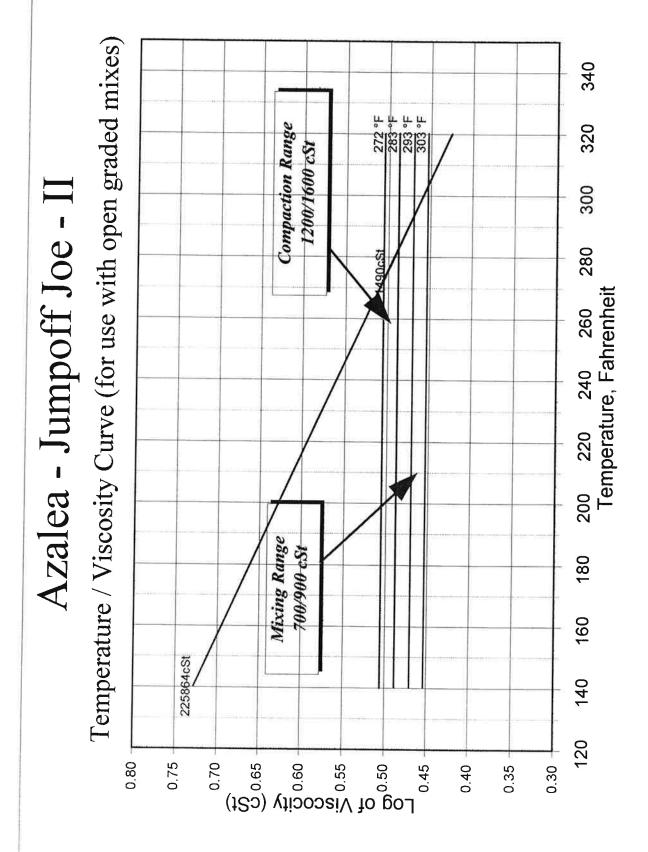
120

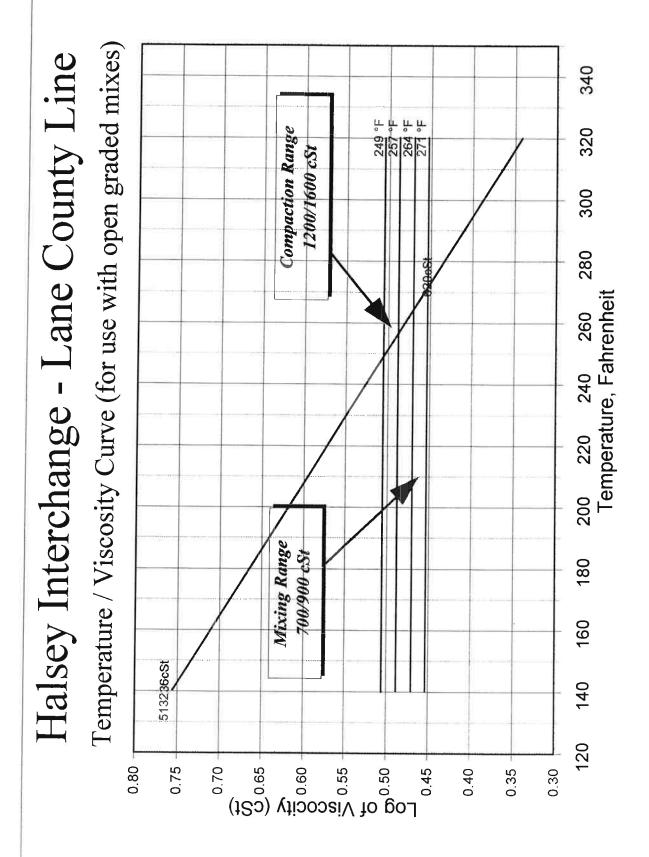

0.30

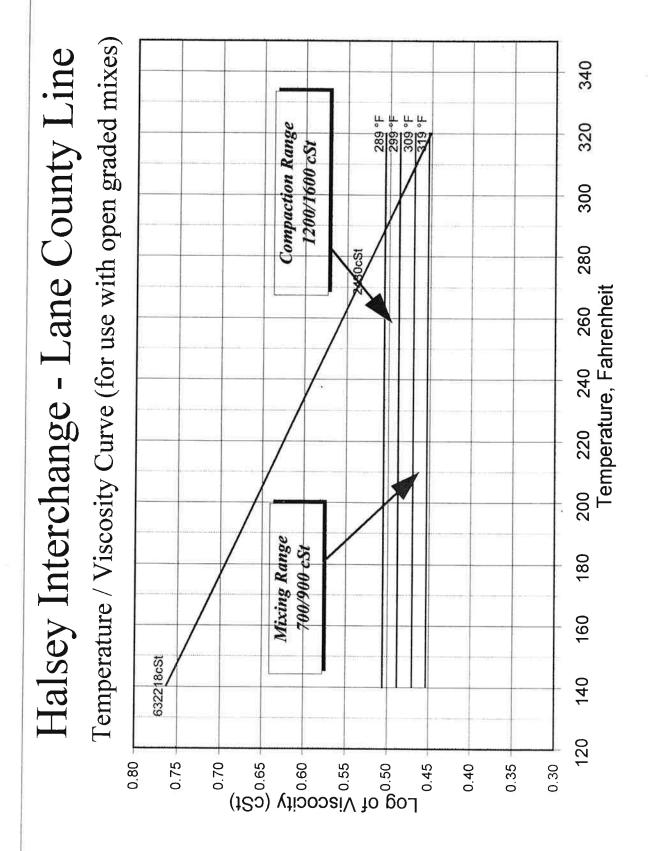

0.35






Temperature / Viscosity Curve (for use with open graded mixes) 340 Prineville Airport - Powell Butte 251 °F 258 °F 276 °F 320 Compaction Range 1200/1600 cSt 300 280 200 220 240 200 Temperature, Fahrenheit Mixing Range 182 006/00L 180 160 278297cSt 140 120 Log of Viscocity (cSt) 0.80 0.75 0.70 0.30 0.45 0.40 0.35





APPENDIX C LABORATORY TEST DATA

LABORATORY TEST DATA

This appendix contains the detailed results for the laboratory tests done at both the ODOT and the OSU labs. All of the data from one project are presented before data from a different project is presented.

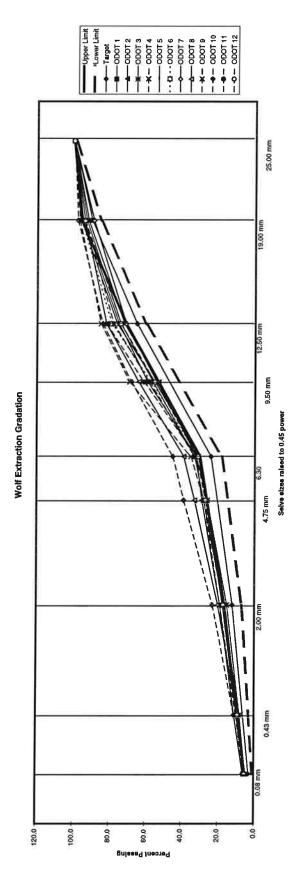
The first page of each data set lists the volumetric measurements of the cores sent to OSU. A summary table shows the minimum, maximum and average value, along with the standard deviation and coefficient of variation.

Tabulated on the second page are the results of the gradation testing done by ODOT. Included on the table is the minimum, maximum and average value, along with the standard deviation and coefficient of variation. The graph below the table provides a plot each core's gradation along with the project's specified gradation.

The final page of data for each project contains two tables. The first table shows the difference between the target gradation and the upper design limit or core. This table allows one to see how far from the target and the upper design limit each core is. The second table displays a summary of the ODOT volumetric measurements for each core. Included on the table is the minimum, maximum and average value, along with the standard deviation and coefficient of variation.

Laboratory Data for Following Projects — OSU Data

Project	Pages
Wolf Creek-W. Fork Dairy Creek	. 2-4
Rufus-Arlington (E. Unit)	
Baldock Slough-S. Baker	8-10
Forge RdLobert Rd.	
Azalea-Jumpoff Joe	14-16
Halsey-Lane County Line	


LOCATION: Wolf Creek ASPHALT: PBA-5 ADDITIVES: None BULK SPECIFIC GRAVITY-VOLUME AIR VOIDS DATA

	VFA NOTES	(%)				71.3				51.9			3 59.4 Gmm = 2.440 3 57.7 Gmm = 2.440
	VMA	(%)	25.3	25.0	20.4	17.5	17.8	22.2	21.7	21.1		19.8	19.8
	٩٨	(%)	14.6	14.3	8.3	5.0	5.3	11.4	10.9	10.2		8.1	8.9
	gwp		2.089	2.098	2.227	2.308	2.300	2.176	2.189	2.206		2.244	2.244
Will Collos Similaria	Thickness	(inches)	2.103	2.053	2.198	2.402	2.340	1.221	1.817	1.699	000	1.880	1.880
	Core	Condition	Good	Good	Bood	Fat spot	Fat spot	Bood	Good	Good	10000	at spot	Good
-	Core	Milepost (37.600 Goo	37.600	38.380 Goo	38.380 F	38.380 F	42.020 Goo	42.020 C	42.020 C	45 200 E	1007.01	45.201
	_		B01	B02	B03	B04	B05	B07	B08	B13	B09	200	B11

The average Gmm for each milepost is from tests perfored by the Operations Support Section of ODOT.

		2		<
		(%)	%	%
Minimum	2.089	5.0	17.5	42.3
Maximum	2.308	14.6	25.3	71.3
Average	2.209	9.6	21.1	55.5
Standard Dev.	0.07	3.0	2.4	9.1
Coefficient of Variation	3.0	31.0	11.3	16.4

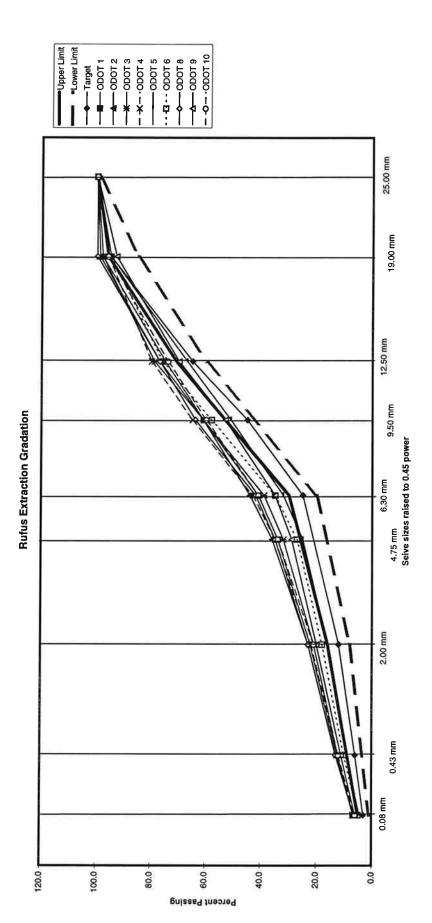
	Γ	Ţ	00	0 2	,	0.0	9.1	2 0	, ,	7.0	2.3	10.4	8.8
	l	3											
		Std. Day	0.0	0.4	1 7	4.	5.4	43	9 0	5.0	2.2	1.0	0.5
		Max	ļģ.	080	0 40	0.00	0.69	45.0	2 6	2.00	23.0	11.0	6.1
		Min	100.0	000	7	0.1.	53.0	30.0	0.00	3 1	15.0	8.0	4.8
		4verage	100.0	6.76	1	/://	59.1	33.7	7 00	1 6	8.//	9.3	5.3
	l	12 A	0.0	0 4		-	2.0	0			5.	0.6	5.2
	l	DODO	P	o.	1	•	w	er,	0 0	1 +	-		
		TOOC	100.0	94.0	82.0	0,40	0.19	32.0	27.0	1 1	2.	0.6	4.8
		DOOT 10	100.0	98.0	840		0.89	45.0	30 0	000	0.03	1.0	6.1
	Passing	DDOT 9	100.0	94.0	78.0	0 0	28.0	33.0	28.0	0	2.0	10.0	5.6
	Percent	STOCK	100.0										
		DOOT 7	100.0	89.0	71.0		7. O.	31.0	26.0	17.0	2	8.0	4.8
		DOT 6	100.0	96.0	79.0	1	0.70	31.0	27.0	17.0		0.0	4.9
		DOT 5 C	100.0	96.0	26.0	i.	22.0	30.0	26.0	16.0	2	9.0	5.3
Fork Dairy		DOT 4 C	100.0	97.0	85.0	000	0.60	35.0	28.0	18.0	2	0.0	5.4
	100000000000000000000000000000000000000	DDOT 3 C	100.0	95.0	75.0	0	0.60	32.0	26.0	0.51		8.0	4.9
Wolf Creek - W.		ODOT 2 (100.0	95.0	72.0	0 62	2.00	32.0	29.0	0.61	1	5.5	6.1
Wolf		DDOT 1	100.0	93.0	74.0	0 99	200	33.0	28.0	17.0		0.8	4.9
		ower (0.66	82.0	0.09		į	18.0		2.0	!		0.
		Upper L	0.0	96.0	7.0			30.0		17.0			2.0
			0.0	0.0	65.0			24.0		12.0	C	0	3.0
	Sieve size	(ww)	25,000	000.61	12,500	002.0	0 0	6.300	4.750	2.000	1000	0.445	0.075
	0	(inches)	- ;	3/4	1/2	3/8	3 3	1/4	No. 4	No. 10	NO AO	10.40	No 200
	(C)	_1		-	_	_		-	-	-		_	_

≧
Dai
쟔
₹
ek-
Creek -
Wolf Creek -

					A	WOII CLEEK - W	W. FORK Dairy	Jairy											
Sieve size Sieve size	ve size	Percent Passing	assing								Differences	Sacres							
(inches) (n	mm)	Target	Upper	Upper	ODOT 1	ODOT 2	ODOT 3	ODOT 4	ODOT 5	ODOT 6	ODOT 7	ODOT 8	ODOT 9	ODOT 10	ODOT 11	ODOT 12	Average	Std Day	20
7	25.000	100.0	100.0	0.0	0.0	0.0		L	l			0.0	+=	c	00	C			
3/4	19.000	95.0	96.0	0,1	2.0	3.0						10		0 6	0	-			2580
1/2	12.500	65.0	71.0	9.9	0.6	-7.0	Ċ		ì			-17.0		19.0	-17.0	0	ľ		-27.4
1/4	6.300	25.0	30.0	-5.0	9.0	-7.0						-14.0		-20.0	-7.0	9			40.5
No. 10	2.000	12.0	16.0	-5.0	-5.0	-7.0						-8.0		-11.0	-5.0	5			27.0
No 200	0.075	3.0	5.0	-2.0	6.1.	-3.1	-1.9					4.5.4			1.8	-2.2			200
	ď	Air voids (%)			3.8	4.0	8.8	8.4	5.8	5.8	7.0	4.5	4.8	2.8	4.1	6.4	5.5	10	33.0
	Ø.	Asphalt Content (%)	tent (%)		5,9	7.4						9.9		6.2	7.2	5.9			30.5
	-1	P200 / %AC			0.8	0.8						0.8		1.0	0.7	6.0			19.8

Sample	Geo. Gmb	Gmm	Geo Va	VMA	VFA
			(%)	(%)	(%)
ODOT 1	2.301	2.444	5.9	17.2	629
ODOT 2	2.242	2.408	6.9	20.6	66.5
ODOT 3	2.122	2.461	13.8	23.2	40.6
ODOT 4	2.14	2.432	12.0	23.1	48.1
ODOT 5	2.163	2.437	11.2	22.3	49.6
орот 6	2.182	2.467	11.6	27.5	57.9
ODOT 7	2.119	2.482	14.6	23.1	36.6
9 ТОДО	2.197	2.42	9.2	21.5	57.1
ODOT 9	2.219	2.457	9.7	21.3	54.5
ODOT 10	2.257	2.421	6.8	19.0	64.4
0DOT 11	2.309	2.438	5.3	18.0	70.6
ODOT 12	2.163	2.469	12.4	22.1	44.0
Áverage	2.201	2.445	9.6	21.6	54.7
Min	2.119	2.408	5.3	17.2	36.6
Max	2.309	2.482	14.6	27.5	20.6
Std. Dev.	0.1	0.0	3.2	2.7	11.0
CA	3.0	0.0	31.7	12.7	20.2

LOCATION: Rufus - Arlington ASPHALT: PBA-5 ADDITIVES: Lime


BULK SPECIFIC GRAVITY-VOLUME AIR VOIDS DATA

		558	75.88	503	2003	2003	303	534	753	534	134	
NOTES		66.0 Gmm = 2.558	61.3 Gmm = 2.558	38 0 Gmm = 2 593	32.3 Gmm = 2.593	22 6 Gmm = 2 593	23.4 Gmm = 2.593	38.3 Gmm = 2.534	Gmm = 2 534	_		
VFA	(%)	999	6.13	38.0	32.3	22.6	23.4	38.3	38.1	58.1	43.7	
VMA	%	10.6	113	14.3	16.4	219	213	187	200	13.2	16.8	
Va	(%)	3.6	4.4	6.8	1,1	16.9	16.3	11.5	116	5.5	9.4	0
Gmb		2.466	2.446	2.363	2.304	2.154	2.169	2.242	2.239	2.394	2.295	2 3071
Thickness	(inches)	2.253	1.740	2.063	1.576	2.460	2.686	2.873	2.257	2.093	1.308	2 131
Core	Condition	Good	Good	Good	Good	Average						
Core	Milepost	126.509 Good	126.509 Good	133.000	133.000 Good	133.000 Good	133.000 Good	135.150 Good	135.150 Good	135.150 Good	135.150 Good	
Q		A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	

The average Gmm for each milepost is from tests perfored by the Operations Support Section of ODOT.

	Gmb	Va	VMA	VFA
		(%)	(%)	(%)
Minimum	2.154	3.6	10.6	22.6
Maximum	2.466	16.9	21.9	0.99
Average	2.307	6.6	16.3	42.2
Standard Dev.	0.10	4.3	3.7	14.4
Coefficient of Variation	4.5	43.8	23.0	34.1

0.0 2.3 5.6 7.0 7.0 7.1 7.1 7.8 7.8 7.8 ં Dev. Std. 100.0 100.0 80.0 65.0 44.0 36.0 23.0 13.0 93.0 93.0 67.0 51.0 32.0 25.0 16.0 9.0 700.0 96.7 75.0 59.3 39.1 31.9 20.7 11.6 100.0 95.0 67.0 51.0 32.0 25.0 16.0 9.0 ODOT 5 100.0 96.0 80.0 65.0 43.0 12.0 6.1 Rufus - Arlington (East unit) ODOT 1 | ODOT 2 | ODOT 3 | ODOT 4 | 100.0 98.0 98.0 61.0 32.0 22.0 12.2 6.7 100.0 99.0 77.0 61.0 44.0 36.0 13.0 100.0 98.0 75.0 61.0 41.0 34.0 12.5 6.6 99.0 85.0 60.0 20.0 100.0 96.0 71.0 16.0 5.0 100.0 95.0 65.0 45.0 25.0 12.0 6.0 3.0 25.000 19.000 12.500 9.500 6.300 4.750 2.000 0.425 Sieve size Sieve size (inches) 3/4 1/2 3/8 1/4 No. 4 No. 40 No 200

Juit)
East 1
notbu (
Arlii
Rufus

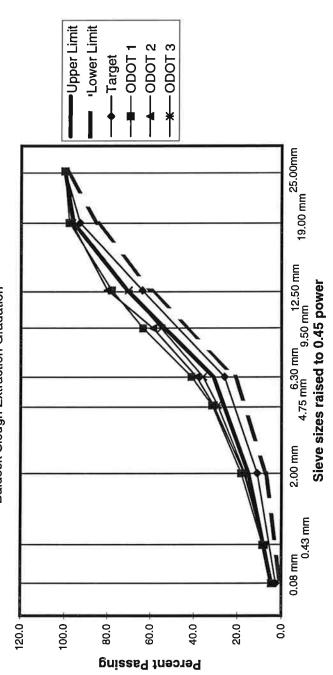
					מחות	- Ariling	us - Ariington (East Unit	(Juna)								
Sieve size	Sieve size Sieve size	Percent Passing	Passing							Differences						
(inches)	(mm)	Target	Upper	Upper	ODOT 1	ODOT 2	ODOT 3	ODOT 4	ODOT 5	ODOT 6	ODOT 8	ODOT 9	ODOT 10	Average	Vall has	è
	25.000	1000	100.0	0.0	00	C				3	3	3				
		2	2	?	3	5				0.0	0.0					
3/5	19.000	95.0	96.0	0.	-3.0	-4.0			0.0	0.0	-5.0					-1340
1/2	12 500	020	71.0	9	400	40.0										4.4.6
4/		3.5	?	2	•	12.0				0.11.0	-12.0					-41.8
1/4	6.300	25.0	30.0	-5.0	-16.0	-19.0	•			-10 0	-17.0		ľ			4 00
1		00,	000	,						2	?					6.62-
NO.		0.21	16.0	0.4-	-10.3	-11.0				9-	-11.0					-27.0
No 200	0.075	3.0	2.0	-2.0	98	-3.4				0	10					1 6
					2					2.1	1.0.4					9.97-
		Air voids (%)			3.2	3.5				10.3	7.0					49.1
	•	Asphalt Content (%)	itent (%)		5.8	6.0	6.3	5.8	4.3	4.9	10	r.	r,	7	90	14.0
	_	04/0/0000			,	•				111	;					2:
		P2001 70AC								<u>o</u>						4.8

VFA	(%)	41.2	55.1	33.8	41.7	14.6	21.7	31.6	36.8	38.3	35.0	14.6	55.1	11.8	33.6
VMA	(%)	17.5	13.3	19.8	15.6	21.4	21.7	23.0	14.8	18.6	18.4	13.3	23.0	3.4	18.2
Geo. Va	(%)	10.3	0.9	13.1	9.1	18.2	17.0	15.7	9.3	11.4	12.2	0.9	18.2	4.1	33.3
Gmm		2.552	2.564	2.575	2.576	2.627	2.593	2.536	2.592	2.552	2.574	2.536	2.627	0.0	1.1
Geo. Gmb		2.289	2.411	2.238	2.341	2.148	2.152	2.138	2.35	2.26	2.259	2.138	2.411	0.1	4.4
Sample		ODOT 1	ODOT 2	ODOT 3	ODOT 4	ODOT 5	орот 6	ODOT 8	ODOT 9	ODOT 10	Average	Min	Max	Std. Dev.	CV

Open graded QC/QA project (OSU cores) ASPHALT: AC-20 ADDITIVES: Lime

BULK SPECIFIC GRAVITY-VOLUME AIR VOIDS DATA

																		o.	for all	for all he Gmm is e values from	for all he Gmm is e values from section	for all he Gmm is e values from section	for all he Gmm is e values from section	for all he Gmm is e values from section	for all he Gmm is e values from section	for all he Gmm is e values from section	for all he Gmm is e values from section	for all he Gmm is e values from section
NOTES	63.6 Gmm = 2.431	60.6 Gmm = 2.431	61.8 Gmm = 2.431	55.2 Gmm = 2.431	55.1 Gmm = 2.431	53.9 Gmm = 2.431	51.1 Gmm = 2.431	51.7 Gmm = 2.431	43.8 Gmm = 2.439	50.6 Gmm = 2.439	52.6 Gmm = 2.439	60.2 Gmm = 2.439	00,0	Gmm = 2.439	55.1 Gmm = 2.439	55.1 Gmm = 2.439 55.1 Gmm = 2.439 52.1 Gmm = 2.439	54.7 Gmm = 2.439 55.1 Gmm = 2.439 52.1 Gmm = 2.439 49.3 Gmm = 2.439	54.7 Gmm = 2.439 55.1 Gmm = 2.439 52.1 Gmm = 2.439 49.3 Gmm = 2.439 50.1 Gmm = 2.436 fc	54.7 Gmm = 2.439 55.1 Gmm = 2.439 52.1 Gmm = 2.439 49.3 Gmm = 2.439 50.1 Gmm = 2.436 for all 52.2 calculations. The G	54. / Gmm = 2.439 55.1 Gmm = 2.439 52.1 Gmm = 2.439 49.3 Gmm = 2.436 for all 52.2 calculations. The Gmm is 52.2 calculations of three values fro	54.7 Gmm = 2.439 55.1 Gmm = 2.439 52.1 Gmm = 2.439 60.1 Gmm = 2.436 60.1 Gmm = 2.436 for all 52.2 calculations. The Gmm is 50.9 average of three values from 48.3 cores taken at section	54. / Gmm = 2.439 55.1 Gmm = 2.439 52.1 Gmm = 2.439 62.1 Gmm = 2.439 60.1 Gmm = 2.436 for all 52.2 calculations. The Gm 50.9 average of three value 48.3 cores taken at section 52.1 299.235.	Gmm = 2.439 Gmm = 2.439 Gmm = 2.439 Gmm = 2.439 Gmm = 2.436 fcalculations. Th average of three cores taken at s 299.235.	Gmm = 2.439 Gmm = 2.439 Gmm = 2.439 Gmm = 2.439 Gmm = 2.436 fcalculations. Th average of three cores taken at s 299.235.	Gmm = 2.439 Gmm = 2.439 Gmm = 2.439 Gmm = 2.439 Gmm = 2.436 Gmm = 2.436 fcalculations. Th average of three cores taken at s 299.235.	Gmm = 2.439 Gmm = 2.439 Gmm = 2.439 Gmm = 2.439 Gmm = 2.436 Gmm = 2.436 fc calculations. Th average of three cores taken at s 299.235.	Gmm = 2.439 Gmm = 2.439 Gmm = 2.439 Gmm = 2.439 Gmm = 2.436 Gmm = 2.436 fc calculations. Th average of three cores taken at s 299.235.	Gmm = 2.439 Gmm = 2.439 Gmm = 2.439 Gmm = 2.439 Gmm = 2.436 Gmm = 2.436 fc calculations. Th average of three cores taken at s 299.235.
VFA (%)	63.6	9.09	61.8	55.2	55.1	53.9	51.1	51.7	43.8	50.6	52.6	60.2	217	24.7	55.1	55.1	55.1 52.1 49.3	55.1 52.1 49.3 50.1	52.1 52.1 49.3 50.1 50.1	52.1 50.1 50.1 50.9	52.1 52.1 50.1 50.9 60.9 48.3	55.1 52.2 50.9 50.9 50.9 50.9 50.9 50.9	55.1 52.1 50.1 50.9 50.9 50.9 50.9 50.9 50.9 50.9 50.9	55.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1	55.1 50.1 50.0 50.0 50.0 50.0 50.0 50.0	55.1 50.1 50.0 50.0 50.0 50.0 50.0 50.0	55.1 50.0 50.0 50.0 50.0 50.0 50.0 50.0	55.1 50.0 50.0 50.0 50.0 50.0 50.0 50.0
VMA (%)	19.2	19.9	19.6	21.5	21.5	21.9	22.8	22.6	25.2	22.5	21.9	19.7	212		21.1	22.0	22.0	23.0	22.0	22.0	23.5 23.5 23.5 23.5 23.5	23.5 23.5 23.5 22.2 23.5 23.5	23 22 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	23 22 23 23 23 23 23 23 23 23 23 23 23 2	22 22 23 23 23 23 23 23 23 23 23 23 23 2	24.2 22.2 24.2 24.2 24.2 24.2 24.2 24.2	22 22 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	23.2 23.0 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5
Av (%)	7.0	7.8	7.5	9.6	9.6	10.1	11.2	10.9	14.1	11.1	10.4	7.8	9.6		9.5	9.5	9.5 10.5 11.7	9.5 10.5 11.7	9.5 10.5 11.7 11.4	10.5 11.7 11.4 10.6 11.1	9.5 10.5 11.7 11.4 10.6 11.1	9.5 10.5 11.7 11.4 10.6 10.6	9.5 10.5 11.7 11.1 12.2 10.6 13.4	9.5 10.5 11.7 11.1 12.2 10.6 13.4 11.4	9.5 10.5 11.7 11.1 12.2 10.6 13.4 11.4	9.5 10.5 11.7 10.6 10.6 13.4 11.4 11.4 10.7	9.5 10.5 11.7 11.4 11.4 11.4 11.4 11.4 11.4 11.4	9.5 10.5 11.7 11.4 11.4 11.4 11.4 11.4 11.4 11.4
Gmb	2.262	2.240	2.249	2.197	2.196	2.186	2.160	2.166	2.094	2.168	2.186	2.248	2.205		2.208	2.208	2.208 2.182 2.155	2.208 2.182 2.155 2.158	2.208 2.182 2.155 2.158 2.178	2.208 2.182 2.155 2.158 2.178 2.178	2.208 2.182 2.155 2.158 2.178 2.166 2.140	2.208 2.182 2.155 2.158 2.178 2.140 2.140	2.208 2.182 2.155 2.158 2.178 2.140 2.177 2.177	2.208 2.155 2.158 2.158 2.178 2.140 2.177 2.109	2.208 2.152 2.158 2.158 2.178 2.177 2.177 2.177 2.177 2.177 2.177	2208 2182 2182 2183 2178 2174 2177 2109 2177 2175 2175 2175	2.208 2.152 2.158 2.158 2.178 2.177 2.177 2.175 2.175 2.175 2.176 2.175 2.175	2.208 2.152 2.158 2.158 2.178 2.177 2.177 2.175 2.175 2.175 2.175 2.113
Thickness (inches)	2.548	2.062	1.969	1.991	2.810	2.619	2.463	1.800	2.515	2.493	2.904	2.583	2.005		2.348	2.348	2.348 2.608 2.163	2.348 2.608 2.163 1.629	2.608 2.608 2.163 1.629 2.313	2.348 2.608 2.163 1.629 2.313 2.357	2.348 2.608 2.163 1.629 2.313 2.357 2.025	2.348 2.608 2.163 1.629 2.313 2.357 2.025 2.328	2.348 2.608 2.163 1.629 2.313 2.357 2.025 2.398 1.743	2.348 2.608 2.163 1.629 2.313 2.357 2.025 2.398 1.743	2.348 2.608 2.163 1.629 2.313 2.025 2.025 2.398 1.743 2.014 2.218	2.348 2.608 2.163 1.629 2.313 2.025 2.025 2.398 1.743 2.014 2.218	2.348 2.608 2.163 1.629 2.313 2.025 2.025 2.038 1.743 2.014 2.418 2.371	2.348 2.608 2.163 1.629 2.313 2.025 2.025 2.038 1.743 2.014 2.418 2.371 1.941
Core Condition	Chip seal	Chip seal	299.216 Chip seal	299.216 Chip seal	299.216 Chip seal	299.216 Chip seal	299.216 Chip seal	299.216 Chip seal	299.235 Chip seal		Chip seal	299.235 Chip seal 299.235 Chip seal	299.235 Chip seal 299.235 Chip seal 299.235 Chip seal	Chip seal Chip seal Chip seal	Chip seal Chip seal Chip seal Good Good	Chip seal Chip seal Chip seal Good Good Good	Chip seal Chip seal Good Good Good Good Good	Chip seal Chip seal Chip seal Good Good Good Good Good	Chip seal Chip seal Chip seal Good Good Good Good Good Good	Chip seal Chip seal Chip seal Good Good Good Good Good Good Good	Chip seal Chip seal Chip seal Good Good Good Good Good Good Good Goo	Chip seal Chip seal Chip seal Good Good Good Good Good Good Good Goo	Chip seal Chip seal Chip seal Chip seal Good Good Good Good Good Good Good Goo	Chip seal Chip seal Chip seal Chip seal Good Good Good Good Good Good Good Goo				
Core Milepost	299.216 Chip sea	299.216	299.216	299.216	299.216	299.216	299.216	299.216	299.235	299.235	299.235	299.235	299.235		299.235	299.235	299.235 299.235 299.235	299.235 Chip s 299.235 Chip s 299.235 Chip s 299.337 Good	299.235 Chip 299.235 Chip 299.337 Good 299.337 Good	299.235 Chip 299.235 Chip 299.235 Chip 299.337 Good 299.338 Good 299.338 Good 299.338 Good	299.235 Chip 299.235 Chip 299.235 Chip 299.337 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good	299.235 Chip 299.235 Chip 299.235 Chip 299.337 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good	299.235 Chip s 299.235 Chip s 299.337 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good	299.235 Chip 299.235 Chip 299.235 Chip 299.337 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good	299.235 Chip 299.235 Chip 299.237 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good	299.235 Chip 299.235 Chip 299.235 Chip 299.337 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good	299.235 Chip 299.235 Chip 299.337 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good	299.235 Chip 299.235 Chip 299.235 Chip 299.337 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.338 Good 299.378 Good
۵	F02	F03	F04	F05	-06	F07	F08	F09	-10	F11	F12	F13	16		11	17	17/	71. 19 20 20	17 119 20 21	17 118 119 22 22 22	17 18 19 22 22 23	17 19 22 22 23 24	17/ 118 22 22 22 23 24 25	F F F F F F F F F F F F F F F F F F F	17/ 118 222 222 224 224 226 227	11/ 11/ 22/ 22/ 22/ 22/ 22/ 22/ 28/ 28/ 28/ 28	11/ 22/ 22/ 22/ 23/ 23/ 24/ 28/ 28/ 28/ 28/ 29/ 29/ 29/ 29/ 29/ 29/ 29/ 29/ 29/ 29	722 723 723 723 723 723 723 723 723 723


The average Gmm for each milepost is from tests perfomed by the Operations Support Section of ODOT.

	Gmb	Va	VMA	VFA
		(%)	(%)	(%)
Minimum	2.094	7.0	19.2	43.8
Maximum	2.262	14.1	25.2	63.6
Average	2.172	10.8	22.4	52.0
Standard Dev.	0.04	1.9	1.6	5.0
Coefficient of Variation	2.0	17.1	7.1	9.7

Baldock Slough - S. Baker Interch.

	CA	0.0	0.7	6.8	7.1	6.9	4.2	5.1	3.7	2.2
	Std. Dev.	0.0	9.0	5.2	4.2	2.7	1.3	6.0	0.3	0.1
	Max	100.0	97.9	80.2	63.6	41.2	31.6	18.2	8.5	4.6
	Min	100.0	2.96	70.4	55.2	35.9	29.1	16.5	7.9	4.4
Percent Passing	Average	ļ`-		76.3						
Percent	орот зу	ľ		70.4						
	ODOT 2	1		78.2						
	ODOT 1	100.0	6'96	80.2	29.0	38.9	30.9		7.9	4.5
	Lower	99.0	85.0	0.09	•	21.0	ï	7.0	•	9.0
	Upper	100.0	96.0	71.0		31.0		15.0		4.6
	Target	100.0	93.0	64.0		26.0		11.0	•	2.6
ieve size Sieve size	(mm)	25.000	19.000	12.500	9.500	6.300	4.750	2.000	0.425	0.075
Sieve size	(inches)	-	3/4	1/2	3/8	1/4	No. 4	No. 10	No. 40	No 200

Baldock Slough - S. Baker Interch.

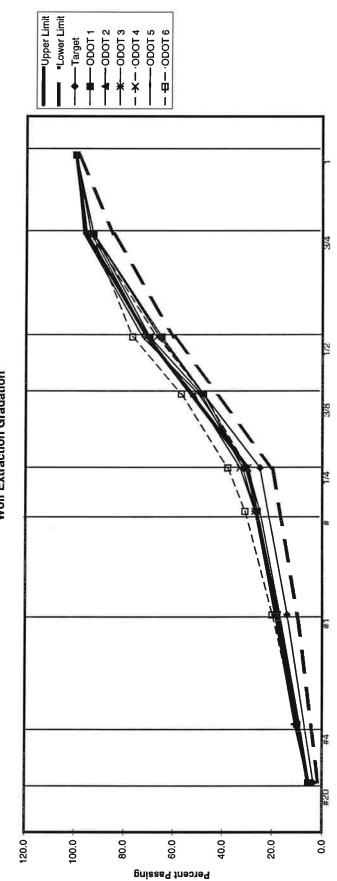
		Dalacen Slough - O. Danel Illefull	- Infancio	S. Danci						
Sieve size	ieve size Sieve size	Percent Passing	Passing				Differences			
(inches)	(mm)	Target	Upper	Upper	ODOT 1	ODOT 1 ODOT 2	ODOT 3	Average	Std. Dev.	20
-	25.000		100.0		0.0	0.0	0.0	0.0		
3/4	19.000	95.0	0.96	-1.0		-1.9	-1.7	-2.2	0.6	-29.7
1/2			71.0		,	-15.2	-5.4	-11.3		-46.0
1/4		25.0	30.0	-6.0			-10.9	-13.7		-194
No. 10		12.0	16.0				4	-5.2		-167
No 200		3.0	5.0			-1.5	1.6	-1.5	0.1	-6.7
		Air voids (%)			9.8	7.4	11.0	9.0		20.4
		Asphalt Content (%)	ntent (%)		5.8	5.7	5.4	5.6	0.2	3.7
		P200 / %AC			0.8	0.8	6.0	0.8	0.0	5.9

Sample	Geo. Gmb	Gmm	Geo V _a	VMA	VFA
			(%)	(%)	(%)
ODOT 1	2.23	2.44	8.6	25.6	66.5
ODOT 2	2.25	2.431	7.4	24.9	70.3
орот з	2.17	2.437	11	27.3	59.8
Åverage	2.217	2.436	0.6	26.0	65.5
Min	2.170	2.431	7.4		59.8
Мах	2.250	2.440	11.0	27.3	70.3
Std. Dev.	0.042	0.005	1.833	_	5.3
CV	1.9	0.2	20.4	4.8	8.1

LOCATION: Forge Rd. - Lobert Rd. ASPHALT: AC-20 ADDITIVES: Lime

BULK SPECIFIC GRAVITY-VOLUME AIR VOIDS DATA

Ω	Core	Core	Thickness	Gmb	Av	VMA	VFA	NOTES
	Milepost	Condition	(inches)		(%)	(%)	(%)	
D01	246.18	Good	2.048	2.130	15.5	30.6	49.4	49.4 Gmm = 2.52
D02	246.18	_	1.853	2.194	12.9	28.5	54.7	54.7 Gmm = 2.52
D07	246.18	Good	1.960	2.196	12.8	28.4	54.8	54.8 Gmm = 2.52
D08	246.18	\sim	2.110	2.171	13.9	29.3	52.6	52.6 Gmm = 2.52
D09	244.14	Good	2.239	2.237	10.3	27.1	62.2	62.2 Gmm = 2.492
D10	244.14	Good	2.213	2.169	13.0	29.3	55.8	55.8 Gmm = 2.492
		Average	2 071	2 183	13.0			


The average Gmm for each milepost is from tests perfored by the Operations Support Section of ODOT.

	Gmb	Va	VMĀ	VFA
		(%)	(%)	(%)
Minimum	2.130	10.3	27.1	49.4
Maximum	2.237	15.5	30.6	62.2
Average	2.183	13.0	28.9	54.9
Standard Dev.	0.03	1.5	1.7	3.9
Coefficient of Variation	1.5	11.9	3.7	7.0

ᄗ	
Œ	
bert	
Ω	
Q	
9	
- :	
2	
щ	
0	
g	
≍	
Ÿ	
-	
_	
_	
_	

_	_	_				_				
	S	000	1.6		. 8	9,0	ο. Ο α	7.0	2.0	. 4 . 4
	Std. Dev.	00	1.5	. 4	2 6	÷ 0	9 0		9:0	0.2
	Max	100.0	0.26	77.0	57.0	38.0	31.0	0.00	11.0	5.6
	Min									5.1
	Average	100.0	94.2	70.5	50.7	32.3	27.0	18.5	10.0	5.3
sing	ODOT 6	┌								5.6
rcent Pas	ODOT 5	100.0	97.0	73.0	50.0	30.0	25.0	17.0	6	5.2
Pe	ODOT 4	100.0	94.0	67.0	48.0	30.0	26.0	19.0	10.0	5.1
	орот з	-								5.4
	ODOT 2	Γ								5.6
	ODOT 1	100.0	93.0	65.0	48.0	31.0	26.0	18.0	10.0	5.1
	Lower	99.0	85.0	0.09		20.0		10.0		1.6
	Upper	100.0	96.0	71.0		30.0	,	18.0	,	5.6
	Target	100.0	93.0	0.99		25.0	,	14.0		3.6
Sieve size	(mm)	25.000	19.000	12.500	9.500	6.300	4.750	2.000	0.425	0.075
Sieve size Sieve size	(inches)	_	3/4	1/2	3/8	1/4	No. 4	No. 10	No. 40	No 200

Wolf Extraction Gradation

Seive sizes raised to 0.45 power

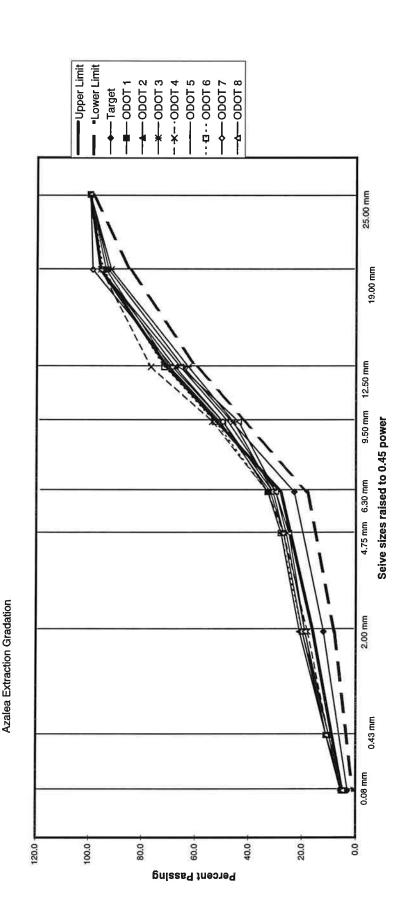
מ	3
0	
Ţ	_
2	ב ב ב
7	į
	1
7	
7	
- כמ	
ב המש	
ב אם סבי	
- PA Opic	
Forde Bd	

				1 2615	שם בסמפון הם	בים בים							
Sieve size	Sieve size Sieve size	Percent Passing	Passing					Differe	Differences				
(inches)	(mm)	Target	Upper	Upper	ODOT 1	ODOT 1 ODOT 2	ODOT 3	ODOT 4	ODOT 5	ODOT 6	Average	Std. Dev.	CV
	25.000	100.0	100.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0		
3/4	19.000	95.0	0.96	-1.0	2.0	2.0		1.0	-2.0	0.1	0.8		1766
1/2	12.500	65.0	71.0	-6.0	0.0			-2.0		-12.0	-5.5	•	-77.8
1/4	6.300	25.0	30.0	-5.0	-6.0			-5.0		-13.0	-7.3		-41 1
No. 10	2.000	12.0	16.0	-6.0	-6.0			-7.0		-8.0	-6.5		-161
No 200	0.075	3.0	5.0	-2.6	-2.1		-2.4	-2.1	-2.2	-2.6	-2.3	0.2	-10.0
		Air voids (%)	(9		9.0	9.0	9.0	10.3		9.0			16.8
		Asphalt Content (%)	ntent (%)		4.8	4.7	4.9	4.9		5.8			7.9
		P200 / %AC	0		1.1	1.2	1.1	1.0	1.0	0.1	1.1	0.1	7.1

Sample	Geo. Gmb	Gmm	Geo V _a	VMA	VFA
			(%)	(%)	(%)
ODOT 1	2.201	2.522	12.7	22.5	43.4
ODOT 2	2.135	2.525	15.4	28.4	45.5
орот з	2.143	2.521	15.0	28.2	46.9
ODOT 4	2.079	2.513	17.3	30.4	43.2
ODOT 5	2.164	2.513	13.9	27.6	49.7
ODOT 6	2.215	2.471	10.4	26.5	61.0
Average	2.156	2.511	14.1		48.3
Min	2.079	2.471	10.4		43.2
Мах	2.215	2.525	17.3	30.4	61.0
Std. Dev.	0.0	0.0	2.4		6.7
C/	2.3	0.8	16.9	9.7	13.8

LOCATION: Azalea - Jumpoff Joe ASPHALT: PBA-6 ADDITIVES: Lime

BULK SPECIFIC GRAVITY-VOLUME AIR VOIDS DATA


	NOTES		56.0 Gmm = 2.610	61.1 Gmm = 2.610	55.8 Gmm = 2.610	53.7 Gmm = 2.610	57.3 Gmm = 2.610	54.3 Gmm = 2.610	51.2 Gmm = 2.610	53.0 Gmm = 2.610	
	VMA VFA	(%)	24.0 56	22.5 67	24.1 55	24.8 5	23.6 57	24.6 54	25.7 5.	25.0 53	
	Av	(%)	10.6	8.7	9.01	11.5	10.1	11.2	12.5	11.8	100
	Gmb		2.334	2.382	2.332	2.311	2.347	2.317	2.283	2.303	1 3 3 2 6
VOLUME AIN VOIDS DATA	Thickness	(inches)	2.154	2.278	2.145	2.213	2.226	2.149	2.384	2.097	2 2016
VOLUNIL	Core	Condition	Good	Average							
	Core	Milepost (78.05	78.05	78.05	78.05	78.05	78.05	78.05	78.05	
חואשונים וכי וכי וכי מולים	۵		C01	C02	C03	C04	C05	900	C07	C08	

The average Gmm for each milepost is from tests perfored by the Operations Support Section of ODOT.

	Gmb	Va	VMA	VFA
		(%)	(%)	(%)
Minimum	2.283	8.7	22.5	51.2
Maximum	2.382	12.5	25.7	61.1
Average	2.326	10.9	24.3	55.3
Standard Dev.	0.03	1.1	6.0	2.8
Coefficient of Variation	1.2	9.9	3.8	5.1

0.00 S 0.0 2.0 2.0 3.3 4.3 6.0 6.0 6.0 7.0 700.0 99.0 77.0 54.0 33.0 28.0 21.0 92.0 92.0 63.0 44.0 30.0 25.0 18.0 4.3 95.5 95.5 68.9 49.5 31.6 26.9 19.6 10.5
 wer
 ODOT 1
 ODOT 2
 ODOT 3
 ODOT 4
 ODOT 5
 ODOT 6
 ODOT 7
 ODOT 7
 ODOT 8
 Ave.

 99.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 100.0
 <t Percent Passing Azalea - Jumpoff Joe 99.0 85.0 60.0 18.0 Lower 96.0 16.0 5.0 93.0 65.0 23.0 25.000 19.000 12.500 9.500 6.300 4.750 2.000 0.425 Sieve size Sieve size (inches) (mm) 3/4 1/2 3/8 1/4 No. 40 No. 40 No 200

Joe
200
-
-
0
鱼
=
_
툼
=
-
ea
_
Azal
-

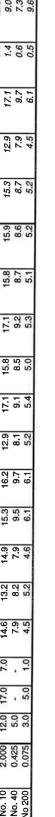
	Ė	_	_		_	_	_	_	_	_	_	_		
		20		0	-133.5	-149.2	177		-12.0	-38.9	57.4		1	8.5
		Std Dev		0.0	N. Y. O.	4.3	13	2 0	y	0.4	37	0.1	5	0.1
		Average		2. 4	C.1-	-2.9	-76	16	0.7	-1.1	6.4	7	;	7.0
		ODOT 8		0.00										
		ODOT 7	C	9 0	0.0	0.5	-7.0	α	2	-1.6	0.6	5.2	7	1.1
	Differences	ODOT 6		9 6							9.3	5,3		
	Differ	ODOT 5	00	ָרָי הְי	9 0	0.0	-6.0	-7.0	?	-1.3	8.7	4.9	7	
טַ		ODOT 4	c	0,0	1 +	:- -	0.6-	9	?	4.1-	0.7	5.2	•	0
Ataica - onlinoil oce		ODOT 3	00	0	i	o.0	-7.0	9	;	6.0-	0.5	5.0	-	2.
ימוכם - סמום		ODOT 2	0.0	000	i c	2.4	0.6-	6		-1.3	9.9	5.1	-	2
7		ODOT 1	0.0	0.0	9	ř	0.8 9	-8.0		-0.4	8.2	5.0	0	6.0
A CONTRACTOR OF STREET		Upper	0.0	-2.0	I,	2	4.0	-4.0		۱۲۰۲-				
The state of the s	Passing	Upper	100.0	96.0	71.0	2	30.0	16.0	ı	5.0		tent (%)		
	Percent Passing	Target	100.0	94.0	99	9	24.0	12.0	0	3.8	Air voids (%)	Asphalt Content (%)	P200 / %AC	
	Sieve size	(mm)	25.000	19.000	12.500	200	6.300	2.000	200	0.0.0				-
	Sieve size Sieve size	(inches)	_	3/4	1/2	! ;	1/4	No. 10	ALC CO.	INO ZOO				

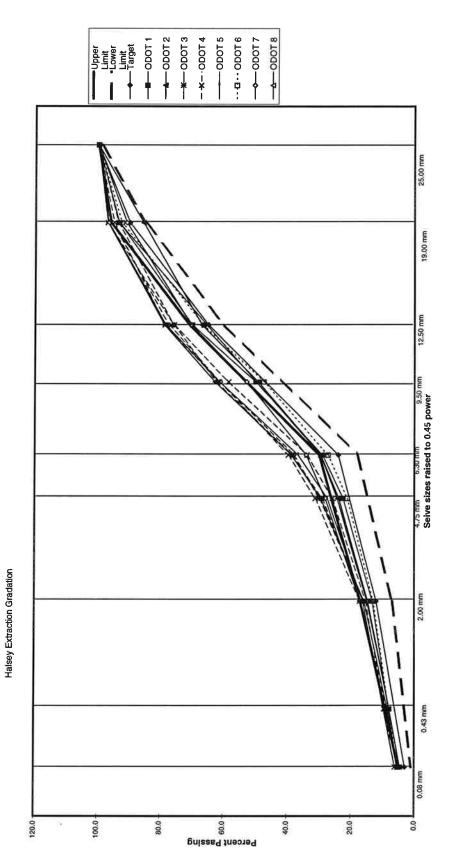
Sample	Geo. Gmb	Gmm	Geo Va	VMA	VFA
			(%)	(%)	(%)
ODOT 1	2.38	2.672	10.9	20.4	46.4
ODOT 2	2.269	2.656	14.6	24.2	39.7
орот з	2.263	2.448	7.6	24.3	68.9
ODOT 4	2.301	2.447	0.9	23.2	74.3
ODOT 5	2.264	2.647	14.5	24.2	40.2
орот 6	2.247	2.656	15.4	25.1	38.6
ODOT 7	2.215	2.675	17.2	26.1	34.0
ODOT 8	2.214	2.68	17.4	25.9	32.8
Average	5.269	2.610	12.9	24.2	46.9
Min	2.214	2.447	0.9	20.4	32.8
Max	2.380	2.680	17.4	26.1	74.3
Std. Dev.	0.1	0.1	4.3	1.8	15.9
CV	2.3	3.9	33.4	7.4	33.9

Open graded QC/QA project (OSU cores)

LOCATION: Halsey - Lane County ASPHALT: PBA - 6 ADDITIVES: Lime

BULK SPECIFIC GRAVITY-VOLUME AIR VOIDS DATA


												1		
NOTES		47.6 Gmm = 2.485	49.4 Gmm = 2.467	52.0 Gmm = 2.467	56.0 Gmm = 2.467	51.8 Gmm = 2.42	51.6 Gmm = 2.42	52.6 Gmm = 2.42	53.5 Gmm = 2.42	46.2 Gmm = 2.422	41.3 Gmm = 2.422	45.1 Gmm = 2.422	42.8 Gmm = 2.422	
VFA	(%)	47.6	49.4	52.0	56.0	51.8	51.6	52.6	53.5	46.2	41.3	45.1	42.8	
VMA	(%)	20.9	21.4	20.5	19.3	23.2	23.2	22.9	22.6	25.1	27.3	25.6	26.6	
Av	(%)	10.9	10.8	8.6	8.5	11.2	11.2	10.9	10.5	13.5	16.0	14.1	15.2	10.8
Gmb		2.213	2.200	2.224	2.257	2.149	2.148	2.157	2.166	2.094	2.034	2.081	2.053	2.179
Thickness	(inches)	1.851	1.874	1.742	1.778	2.031	2.051	2.066	2.055	1.957	1.544	2.002	1.995	1.934
Core	Condition	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Average
Core	Milepost	212.980 Good	212.984 G	212.984 G	212.984 Good	213.200 G	213.200 Good	213.200 G	213.200 Good	213.250 G	213.250 Good	213.250 Good	213.250 Gc	
۵		E02	E01	E03	E04	E07	E06	E08	E11	E05	E09	E10	E12	


The average Gmm for each milepost is from tests perfomed by the Operations Support Section of ODOT.

Summary

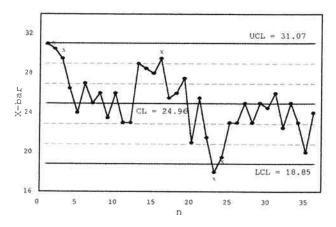
	Gmb	/a	VMA	VFA
		(%)	(%)	(%)
Minimum	2.034	8.5	19.3	41.3
Maximum	2.257	16.0	27.3	56.0
Average	2.148	11.9	23.2	49.2
Standard Dev.	0.1	2.2	2.4	4.4
Coefficient of Variation	3.1	18.4	10.4	8.9

Sieve size	Sieve size Sieve size						100000000000000000000000000000000000000			2		Perc	ent Pass	ina								
(inches)	(mm)	Target	Upper 1	-ower	ODOT 1	ODOT 2	2 ODOT	3 ODOT	4 ODO	T 5 ODC	T 6 OD	OT 7 IO	DOT 8	ODOT 9	ODOT 1	1 COOT 1	1 Average		Adin	VehA	Chd Dow	10
-	25,000	100 0	1000	0 00	1000	Ľ	Ľ	Г	ľ	ľ	ľ	000	000,	000,	ľ			1		April	010.0	3
1,00				2	200					7	77	0.00	0.00	0.00	_		_	0.00	100.0	100.0		0.0
4/5	19.000	90.0	96.0	82.0	85.7							91.0	97.0	95.0				8 8 6	85.7	07 1		25
12	12 500	65.0	710	60.0	R7 1	70.1						10.4	1	0				2	3	1.10		0.0
9.0		2		9	5							4.5	18.9	0.0				73.2	65.5	78.9		7.3
3/8	9.200	ř		•	49.3	50.1						52.9	65.9	61.5				6 95	47.5	0 69		110
1/4	6 300	0 70	300	0	300							, , ,	0	-						2		2
		1	3	2	20.03							4	30.0	39.				7.7	27.2	39.7		13.5
No. 4	4.750	•	(00)		23.8							28.1	29.5	31.2				986	21.1	210		100
No. 10	2.000	12.0	17.0	7.0	14.6		14.9	5.25		16.9	100	17.1	4 2	171	400	0.01		244		1,1	3;	0.50
No 40		L			1								9					5.0	6.3	1.71		0,6
NO. 40		5.0		•	D	8.2						- -	8.5	9.2				8.7	2.9	0 7		73
No 200	0.075	3.0	20	9	4.5	5.5						F 4	4	0								2
				1	2	-						5	2.5	0.0				1	4	2		90

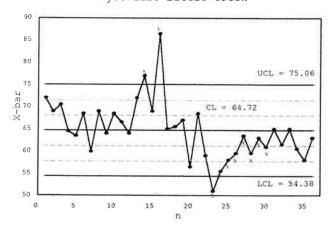
unty
ပ္ပ
- Lane
Inter.
lalsey
Ï

)	e v		2	Γ		270.6		-65.0	7 02	4.00.4	411	-	22.5	100	7.00	0 4	5
			1	O. C	00	2.5	3.3		5.3	3,) †	1 4	- 1	0.0	5	6.7	2.0	5
			Cod Dea															
			Autorogo	akereda.	00	3	ci.	0	20.7	-0-		-3.3	9 6	7.7.	12	2,	57	3
			ODOT 14	` -	C	2	e,	•	5	13.6	3	68.	0	7.7-	, v	ŕ	o.	
			T 10		00	2 1	0.7	100	2.3	13.0	2	ج و و		1.2.	86	2.	9	
			000 6		0.0		0.0	a	2	1.7		<u>-</u>	cc	2	α	2	0.0	504
			TODO		د	_	_	4	-	-14	_	4?	•		P		Ψ	
			ODOT 8 ODO		0.0	0	0.2-	130	2	13.8		χ. Τ	00	5:5	4.5	?	0.9	0
		Jimerences	DDOT 7										P 6	- 11				
	3.0	-1	ODOT 6 O	100		7 0	t.	ıc.		-2.5	0	?	000		2.8		5.0	•
	l	ļ	_	9	2	a	2	3.5		<u></u>	c	7.	£.		89	-	77.	-
			ODOT 5					•										
2			ODOT 4	6	3		i	-10.9	C	Ď.	0	5	-3		8.4	ŗ	0.0	-
		ŀ	ODOT 3	0	2.5	<u>.</u>	2 1	9	9	4	000	6.3	9.1-		X. X.		4.0	0
֡֜֝֜֝֜֜֜֝֓֜֓֓֓֓֓֓֜֟֜֓֓֓֓֓֓֓֓֓֟֓֓֓֓֟֓֓֟֟֓֓֟		-	2 2 0	00	3	6	1		4	0.	20	i	1.5		D:4	7	t o	α
laisey		1	3	0	?	9			C	9	~	į-i	ri N		3.0	u		σ
ב		1000	1000	C	,	_		P	7	7	7		Ċ		מ	ı	,	_
		I lange	Jaddo	00		0.	00	ō.	0 4	5	0.5		-2.0					
	sing	Panor	Book	100.0		O. 00	71.0	5	30.0	2	0.9		0.0	-		(%)	- /:/:	
	Percent Passing	arrest 1		0.00	0 10	0.00	65.0	2	25.0		12.0	-	3.0	Air words (9/.)	(0/) 501	Asphalt Content (%)		F200 / %AC
	ů.	Tab		_	_	3	9	3	00	ं	3	75	07	Airvo	2	Aspha	0000	2200
	Sieve Si	(444)		25.000	_	30.8	12 500		002.9		2.0	2000						
	Sieve size Sieve size	(inches)	1	_	7/0	4,9	1/2	1	1/4	1	20.70	Alo oco	2020					

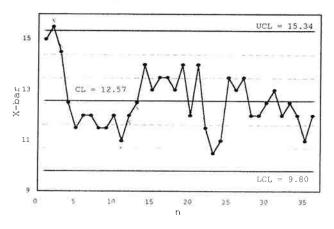
VFA	(%)	49.4	41.3	41.8	48.4	50.3	45.5	38.9	57.1	53.2	65.1	9.69	51.0	38.9	9.69	9.7	19.1
VMA	(%)	19.9	21.8	23.7	23.3	22.6	21.2	23.9	21.5	20.7	19.4	17.4	21.4	17.4	23.9	2.0	9.3
Geo V _s	(%)	10.1	12.8	13.8	12.0	11.2	11.6	14.6	9.5	9.7	6.8	5.3	10.6	5.3	14.6	2.8	26.6
Gmm		2.478	2.493	2.461	2.432	2.437	2.467	2.482	2.42	2.457	2.421	2.438	2.453	2.420	2.493	0.0	1.0
Geo. Gmb		2.228	2.174	2.122	2.14	2.163	2.182	2.119	2.197	2.219	2.257	2.309	2.192	2.119	2.309	0.1	2.7
Sample		ODOT 1	ODOT 2	орот з	ODOT 4	ODOT 5	ODOT 6	ODOT 7	ODOT 8	9 TOGO	ODOT 10	ODOT 11	Average	Min	Max	Std. Dev.	CA

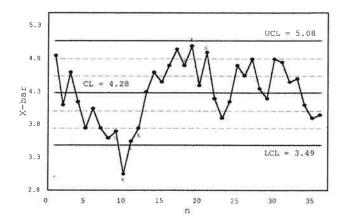

APPENDIX D QA TEST DATA PLOTTED ON CONTROL CHARTS

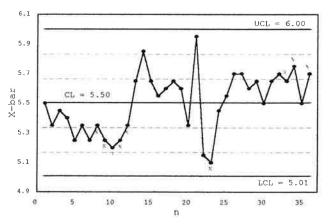
QA TEST DATA PLOTTED ON CONTROL CHARTS


Contractor process control data were not available for analysis, but ODOT quality assurance data were available. For all of the projects where there was a sufficient amount of QA test results, the researchers charted the data as though they were QC data to determine how often the data would have indicated a need to consider corrective action. Table 5.2 indicates the projects and factors for which charts were created. These charts are provided on the following pages. On the charts, an "X" indicates that a corrective action might be necessary.

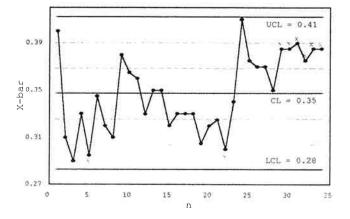
In reviewing these charts, the reader must realize that the charts use control limits and not specification limits to determine when corrective action might be necessary. It is desirable for the control limits to be within the specification limits. Table 5.3 indicates whether the control limits were within the specification limits for each of the projects and factors charted.


X-bar Chart for 1/4" Sieve Hayesville-Battle Creek

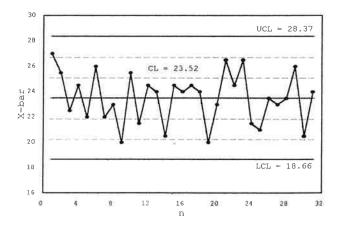

X-bar Chart for 1/2" Sieve Hayesville-Battle Creek


X-bar Chart for #10 Hayesville-Battle Creek

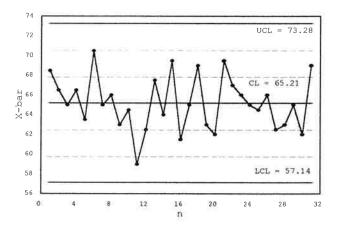
X-bar Chart for #200 Hayesville-Battle Creek



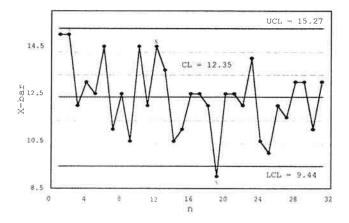
X-bar Chart for Asphalt Hayesville-Battle Creek


X-bar Chart for Moisture

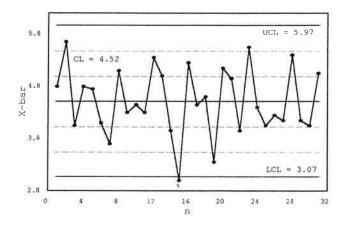
Hayesville-Battle Creek


X-bar Chart for 1/4" Sieve

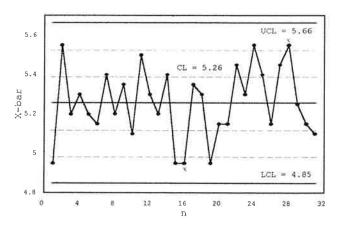
W. Marquam Int.-N. Tigard Int.


X-bar Chart for 1/2" Sieve

W. Marquam Int.-N. Tigard Int.

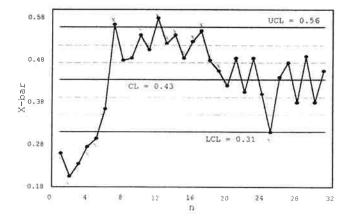

X-bar Chart for #10

W. Marquam Int.-N. Tigard Int.

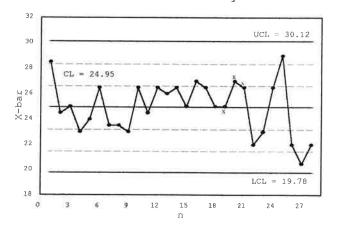


X-bar Chart for #200

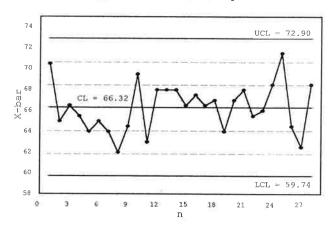
W. Marquam Int.-N. Tigard Int.

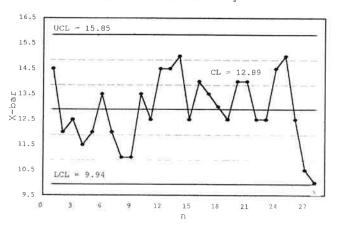


X-bar Chart for Asphalt W. Marquam Int.-N. Tigard Int.

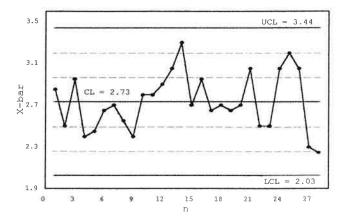


X-bar Chart for Moisture

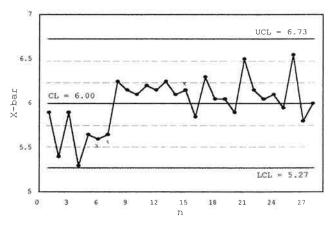

W. Marquam Int.-N. Tigard Int.


X-bar Chart for 1/4" Sieve Wolf Cr - W Fork Dairy Cr

X-bar Chart for 1/2" Sieve Wolf Cr - W Fork Dairy Cr

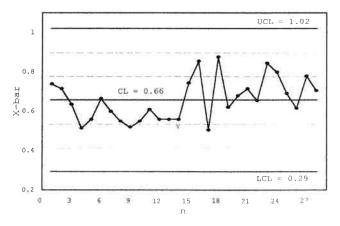


X-bar Chart for #10 Wolf Cr - W Fork Dairy Cr

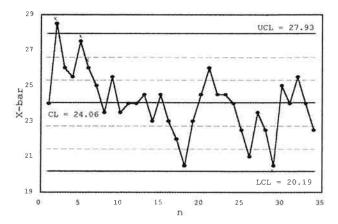


X-bar Chart for #200

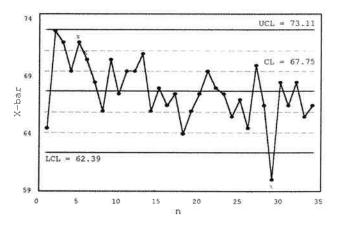
Wolf Cr - W Fork Dairy Cr



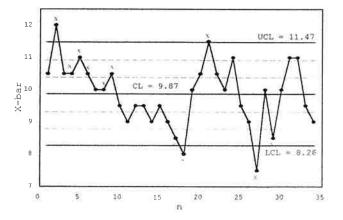
X-bar Chart for Asphalt Wolf Cr - W Fork Dairy Cr


X-bar Chart for Moisture

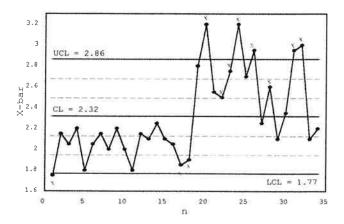
Wolf Cr - W Fork Dairy Cr


X-bar Chart for 1/4" Sieve

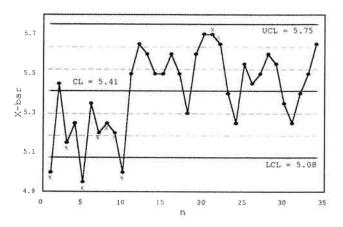
Corbett Int. - Multnomah Falls


X-bar Chart for 1/2" Sieve

Corbett Int. - Multnomah Falls

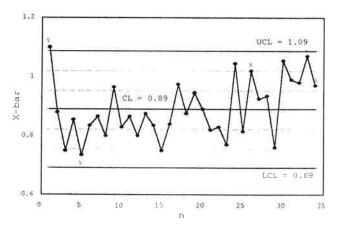

X-bar Chart for #10

Corbett Int. - Multnomah Falls

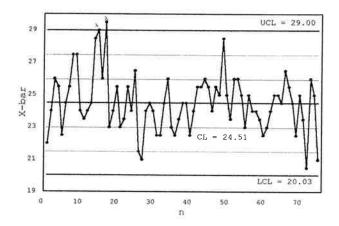


X-bar Chart for #200

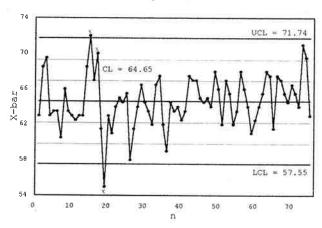
Corbett Int. - Multnomah Falls



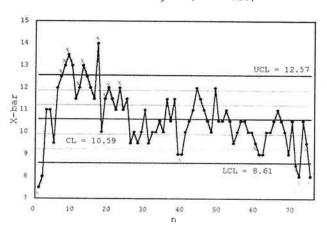
X-bar Chart for Asphalt Corbett Int. - Multnomah Falls


X-bar Chart for Moisture

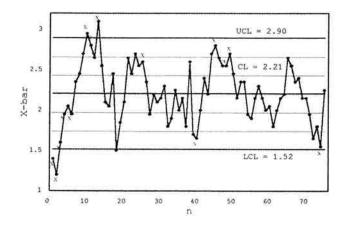
Corbett Int. - Multnomah Falls


X-bar Chart for 1/4" Sieve

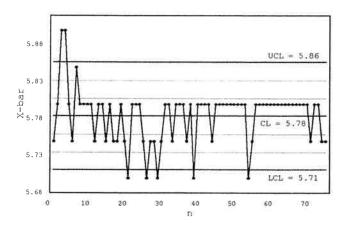
Rufus-Arlington (West Unit)


X-bar Chart for 1/2" Sieve

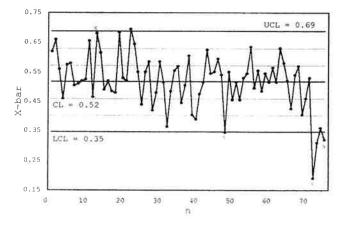
Rufus-Arlington (West Unit)


X-bar Chart for #10

Rufus-Arlington (West Unit)


X-bar Chart for #200

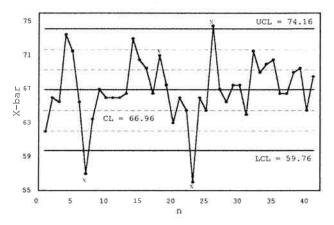
Rufus-Arlington (West Unit)


X-bar Chart for Asphalt

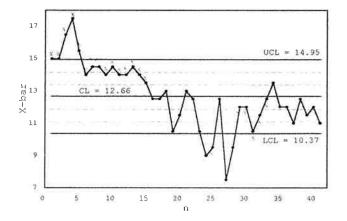
Rufus-Arlington (West Unit)


X-bar Chart for Moisture

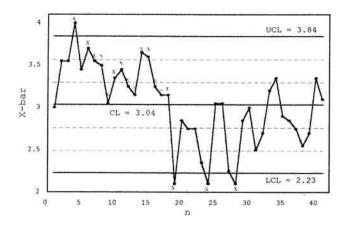
Rufus-Arlington (West Unit)


X-bar Chart for 1/4" Sieve

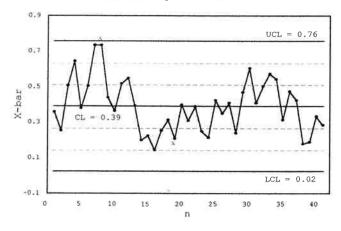
Rufus-Arlington (East Unit)


X-bar Chart for 1/2" Sieve

Rufus-Arlington (East Unit)



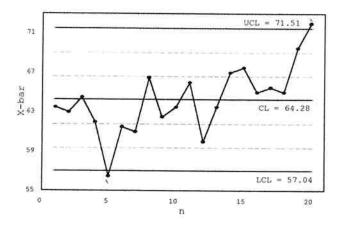
X-bar Chart for #10


Rufus-Arlington (East Unit)

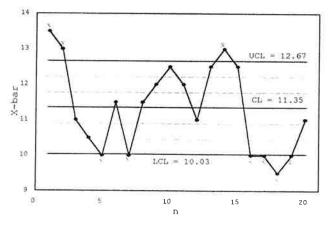
X-bar Chart for #200 Rufus-Arlington (East Unit)



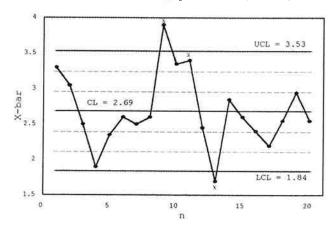
X-bar Chart for Moisture Rufus-Arlington (East Unit)


X-bar Chart for 1/4" Sieve

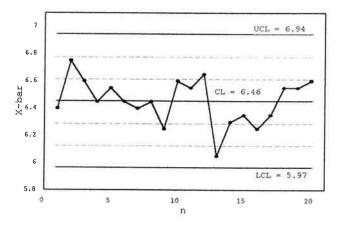
E. Pendleton - Emigrant Hill (Lot 2B)


X-bar Chart for 1/2" Sieve

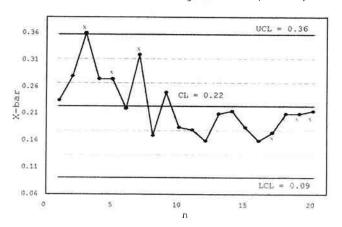
E. Pendleton - Emigrant Hill (Lot 2B)


X-bar Chart for #10

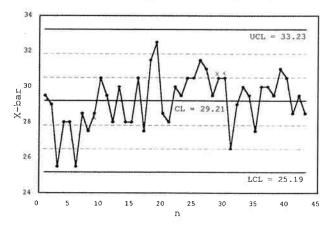
E. Pendleton - Emigrant Hill (Lot 2B)


X-bar Chart for #200

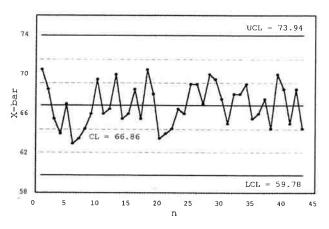
E. Pendleton - Emigrant Hill (Lot 2B)


X-bar Chart for Asphalt

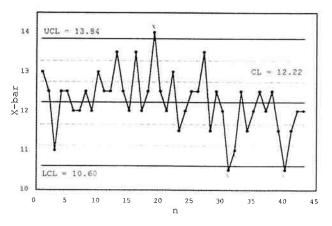
E. Pendleton - Emigrant Hill (Lot 2B)


X-bar Chart for Moisture

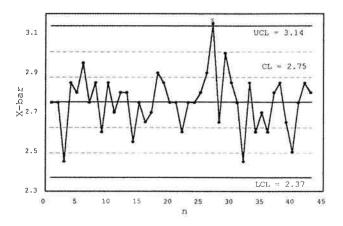
E. Pendleton - Emigrant Hill (Lot 2B)


X-bar Chart for 1/4" Sieve

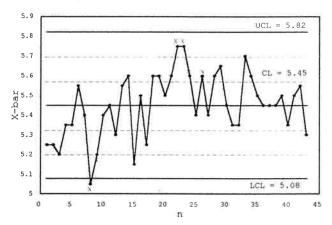
Baldock Slough - S. Baker (Lot 1)


X-bar Chart for 1/2" Sieve

Baldock Slough - S. Baker (Lot 1)

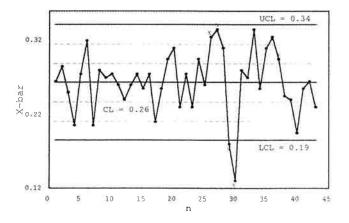

X-bar Chart for #10

Baldock Slough - S. Baker (Lot 1)

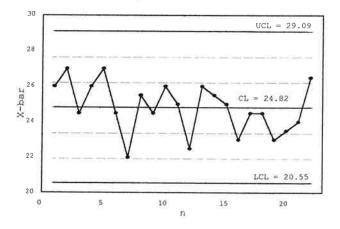


X-bar Chart for #200

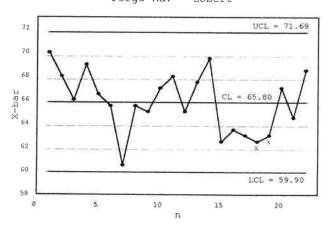
Baldock Slough - S. Baker (Lot 1)

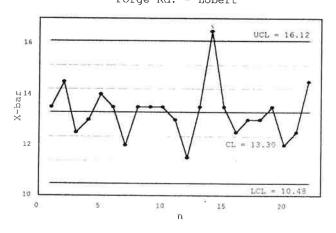


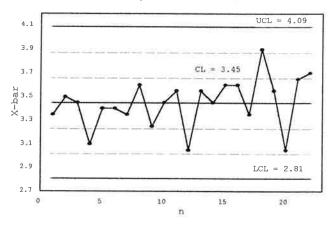
X-bar Chart for AsphaltBaldock Slough - S. Baker (Lot 1)

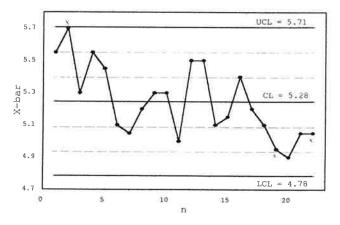


X-bar Chart for Moisture

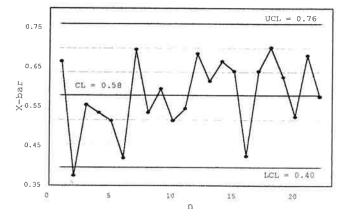

Baldock Slough - S. Baker (Lot 1)


X-bar Chart for 1/4" Sieve Forge Rd. - Lobert

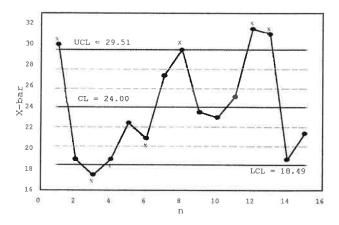

X-bar Chart for 1/2" Sieve Forge Rd. - Lobert


X-bar Chart for #10 Forge Rd. - Lobert

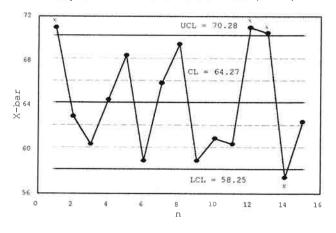
X-bar Chart for #200 Forge Rd. - Lobert



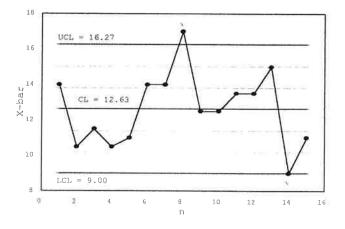
X-bar Chart for Asphalt Forge Rd. - Lobert


X-bar Chart for Moisture

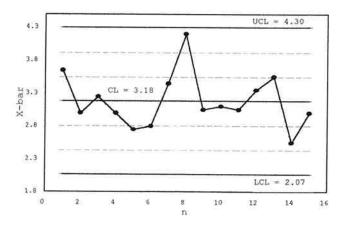
Forge Rd. - Lobert


X-bar Chart for 1/4" Sieve

Jump Off Joe - North Grants Pass (Lot 1)


X-bar Chart for 1/2" Sieve

Jump Off Joe - North Grants Pass (Lot 1)

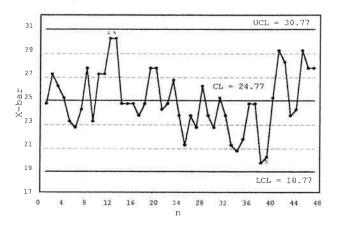


X-bar Chart for #10

Jump Off Joe - North Grants Pass (Lot 1)

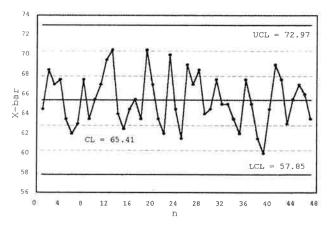


X-bar Chart for #200 Jump Off Joe - North Grants Pass (Lot 1)

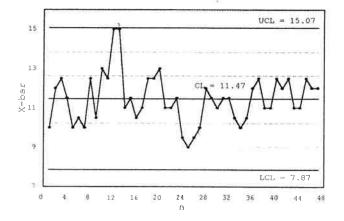


X-bar Chart for Moisture

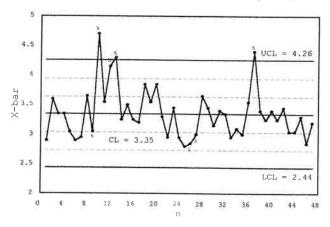
Jump Off Joe - North Grants Pass (Lot 1)



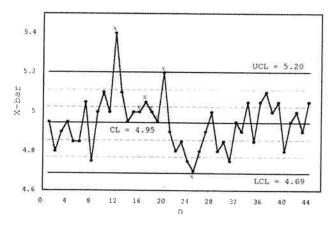
X-bar Chart for 1/4" Sieve Jump Off Joe - North Grants Pass (Lot 2)


X-bar Chart for 1/2" Sieve

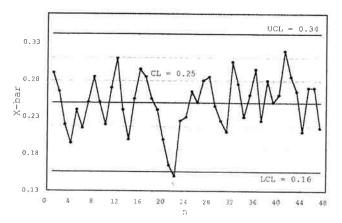
Jump Off Joe - North Grants Pass (Lot 2)


X-bar Chart for #10

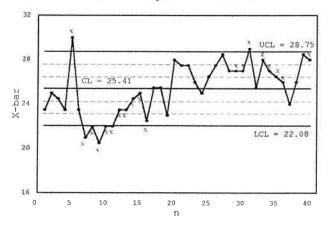
Jump Off Joe - North Grants Pass (Lot 2)


X-bar Chart for #200

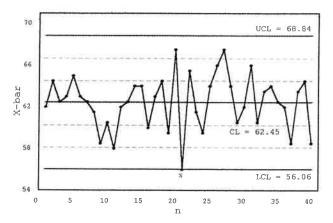
Jump Off Joe - North Grants Pass (Lot 2)


X-bar Chart for Asphalt

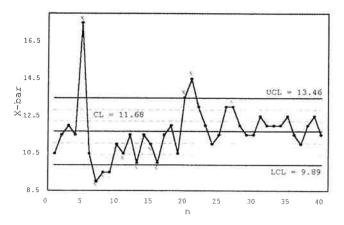
Jump Off Joe - North Grants Pass (Lot 2)


X-bar Chart for Moisture

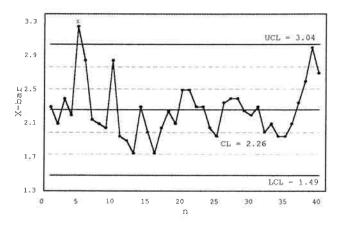
Jump Off Joe - North Grants Pass (Lot 2)


X-bar Chart for 1/4" Sieve

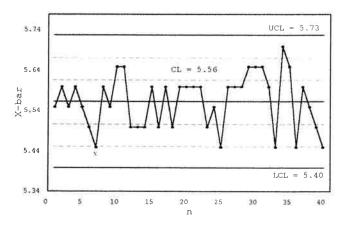
Azalea - Jumpoff Joe (Lot 2)


X-bar Chart for 1/2" Sieve

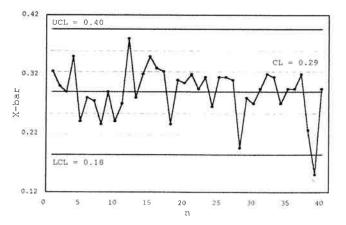
Azalea - Jumpoff Joe (Lot 2)


X-bar Chart for #10

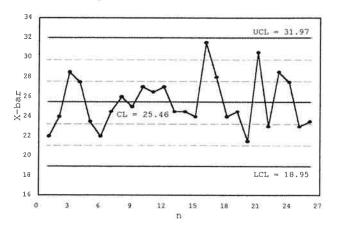
Azalea - Jumpoff Joe (Lot 2)


X-bar Chart for #200

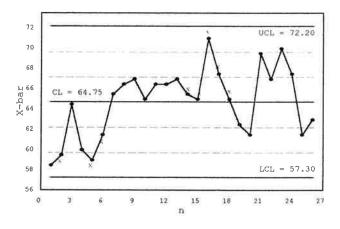
Azalea - Jumpoff Joe (Lot 2)

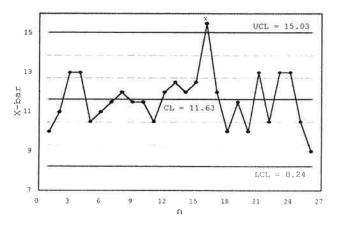

X-bar Chart for Asphalt

Azalea - Jumpoff Joe (Lot 2)

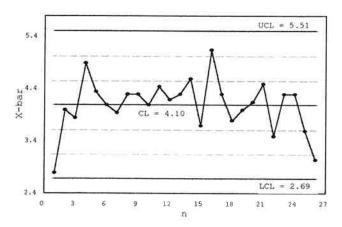


X-bar Chart for Moisture

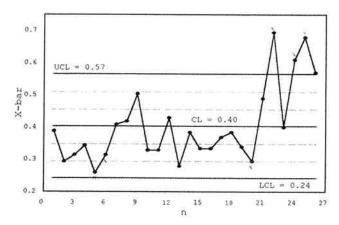

Azalea - Jumpoff Joe (Lot 2)


X-bar Chart for 1/4" Sieve
Halsey Int. - Lane Co. Line (Lot #3)

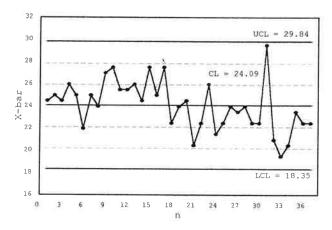
X-bar Chart for 1/2" Sieve Halsey Int. - Lane Co. Line (Lot #3)



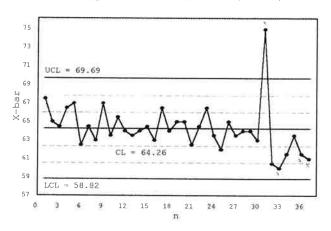
X-bar Chart for #10
Halsey Int. - Lane Co. Line (Lot #3)


X-bar Chart for #200

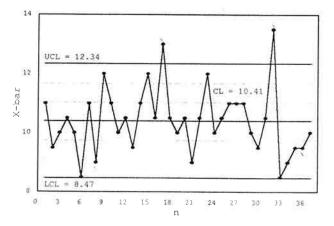
Halsey Int. - Lane Co. Line (Lot #3)


X-bar Chart for Moisture

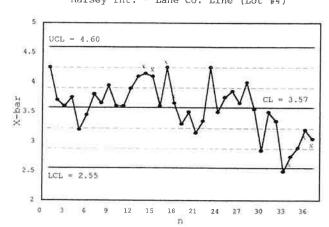
Halsey Int. - Lane Co. Line (Lot #3)


X-bar Chart for 1/4" Sieve

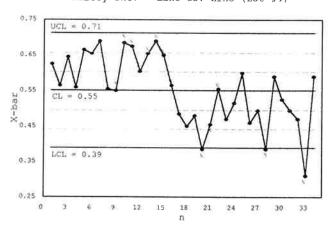
Halsey Int. - Lane Co. Line (Lot #4)


X-bar Chart for 1/2" Sieve

Halsey Int. - Lane Co. Line (Lot #4)



X-bar Chart for #10


Halsey Int. - Lane Co. Line (Lot #4)

X-bar Chart for #200 Halsey Int. - Lane Co. Line (Lot #4)

X-bar Chart for Moisture
Halsey Int. - Lane Co. Line (Lot #4)

APPENDIX E PAY ADJUSTMENT SCHEDULES – ODOT

QUALITY LEVEL ANALYSIS BY THE STANDARD DEVIATION METHOD

QUALITY LEVEL ANALYSIS BY THE STANDARD DEVIATION METHOD

							_				_		_	_	_	_	_	_			_	_	_	_	_			-		_	_	_		_					_				
	-		_		_										_																												
QUALITY	n = 10	0 = 1	2 65			1 65	1.56	49	2 4 6	131		1.21	1.17	200	40	00 1	96.0	0.92	0 0	0 82	0.79	0.75	0.72	99.0	0.62	0.59	0.57	0.51	0.48	0.45	0.4.0	0.37	0.34	0.29	0.26	0.24	0,21	0.16	I	0.10	71/	0.03	00.0
		- 11	2 53	2 00	1	9	ω.	4.0	7 4 6) (U	1.26	1.21	9 .	0.0	104	1 00	96.0	0.93	0.89	0.82	0.79	0.76	2/0	99 0	0.63	09.0	75.0	0.51	0.48	0.46	0.40	0.37	0.35	0.29	0.26	0.24	0.21	0.16	0.13	0.10	0.00	0.03	00.0
LOWER		n = 8	2 39	1.81	1.70	1.61	1.54	1.47	- t	1 30	1,25	121	9.	1 08	1 04	1.00	96.0	0 0	0.86	0.82	62'0	0.76	0.73	0.66	0.63	0.60	700	0.52	0.49	0.46	0 40	0.38	0.32	0.29	0.27	0.24	0.21	0.16	0.13	0.11	0.05	0.03	0.00
αυ OR EX αι		N = 7	2.23	1.76	1.67	1,59	1.52	1.46	3.40	130	1.25	1.20	0 0	108	1.04	1.00	0.97	0.03	0.80	0.83	0.80	0.76	5/30	0.67	0.64	0.61	0.08	0.52	0.49	0.46	0.41	0.38	0.35	0.30	0.27	0.25	0.21	0.16	0.13	0.11	0.05	0.03	0.00
NDEX QUINDEX		9 = u	2.03	1.70	1.62	1,55	1.49	τ τ Ε α	33	1.29	1.24	1.20	5 5	1 08	1,04	1.01	0.97	46.0	0.90	0.84	0.80	0.77	4 7 0	0.68	0,65	0.62	0.58	0.53	0.50	0.47	0.41	0.39	0.33	0:30	0.27	0.25	0.22	0.16	0.14	0.11	0.05	0.03	0.00
QUALITY INDEX		n = 5	1.79	1 60	N	1.49	44	35	33	1.27	1 23	119	0 5	1.08	1,05	1.01	0.98	0.95	880	0.85	0.82	0.78	0 7 0	690	99.0	0.63	0.57	0.54	0.51	0 47	0.43	0.40	0.37	0.31	0.28	0.25	0.23	0.17	0.14	0.11	0.06	0.03	0.00
R QUA		7 = 4	1.50	1 44	1.41	1.38	35	1 29	1.26	1,23	1.20	117	1	1 08	1.05	1 02	660	96.0	0.90	0.87	0.84	0.81	0.75	0.72	69'0	0.66	0,60	0.57	0.54	0.51	0.45	0.42	98.0	0.33	0.30	0.27	0.24	0.18	0,15	0.12	0.06	0.03	0.00
UPPER		ნ = ∩	1.16	1,15		1 14		2	1.12	1,11	1.10	1 09	90.1	100	1.03	1.01	1 00	/ B C	0.93	0.91	0.89	0.87	0.00	0.79	92.0	0.74	0.68	0.65	0.62	0.59	0.52	0.49	0.46	0.39	0.36	0.32	0.29	0.22	0.18	0 14	0.07	0.04	0.00
PERCEN IMITS F	SITIVE VALUES	5	001 96	26	26	96	0.60	# E6	92	91	06	500	87	86	85	84	200	81	80	79	78	75	75	74	73	72	20	69	68	/9 66	65	64	62	61	G (80	57	56	55	53	52	51	50
P. or P. WITHIN	POSI																																										

NOTE: For negative values of Q₀ or Q_L , P_D or P_L is equal to 100 minus the table value for P_D or P_L if the value of Q₀ or Q₁ does not correspond exactly to a figure in the table, use the next higher figure

P _u or P _L PERCENT		UPPER QUALITY INDEX QU	ITY INC	EX Qu	OR LOWER		QUALITY
WITHIN LIMITS FOR				INDEX			
	Ç	n = 15	n = 19	n = 26	n = 38	n = 70	n = 201
OF Quor Q	2 1		₽	₽	2	to	
100		0 0	CZ = U	n = 37	n = 69	n = 200	
66	20.0	20.00	3.20	3.38	3.54	3.70	3,83
26	50.7	4 6	2,18	2.25	2.26	2,29	2.31
26	1.0	50.	1.96	1.99	2.01	2.03	2.05
96	1.7.7	0.0	20 1	83	1,85	1.86	1,87
, v		200	1.70	1.71	1.73	1.74	1.75
96	80.7	65.1	1.61	1.62	1.63	1.63	1.64
5 8	00.	ارد. ا	1.52	1.53	1.54	1,55	1.55
200	1.44	1.44	1,45	4.46	1.46	1,47	1.47
35	1.37	.38	1.39	1.39	1.40	1.40	1.40
500	1.32	1,32	1.33	1.33	1.33	1.34	1 34
06	1.26	1.27	1.27	1.27	1.23	28	200
68	1.21	1.22	1.22	1.22	1 22	1 25	200
888	1.17	1.17	1.17	1 17	1 17	1 17	3 5
87	1.12	1.12	112	110			
98	1.08	1 00	1 00	9 00	7 0	2 6	5
85	1.04	104	201	000	000	20.	1,08
84	00	0	1 0	5 6	40.0	1.04	D.C
83	96.0	00.0	200	00.0	0.99	66.0	0.99
82	0000	0000	00.00	0.35	0.95	0.95	0.95
81	200	26.0	0.92	0.92	0.92	0.92	0.92
08	0.00	0.0	0.88	0.88	0.88	0.88	0.88
52	000	0.85	0.85	0.84	0.84	0.84	0.84
28	0.0	D. 0	0.81	0.81	0.81	0.81	0.81
22	0.70	1 0	0.78	0.78	0,77	0.77	0.77
76	27.0	0.73	0.73	0.74	0.74	0.74	0.74
75		0.00	0.7	o.	0.71	0.71	0.71
7.4	0.00	0.00	0.68	0.68	0.68	0.68	0.67
73	0.00	0.00	0.65	0.65	0.65	0.64	0.64
2, 2,	0.62	0.62	0.62	0.62	0,62	0.61	0.61
71	0.59	0.59	0.59	0.59	0.59	0.58	0.58
1/	0.56	0.56	0.56	0.56	0.56	0.55	0.55
0, 0	0.53	0.53	0.53	0.53	0.53	0.53	0.52
000	0.50	0.50	0.50	0.50	0.50	0.50	0.50
000	0.48	0.48	0.47	0.47	0.47	0.47	0.47
/9	0.45	0.45	0.45	0.44	0,44	0.44	0.44
90 0	0.42	0.42	0.42	0.45	0.41	0.41	0.41
60	0.39	0.39	0.39	0.39	0.39	0.39	0.39
4 6	0.37	0.37	0.36	0.36	0.36	96.0	96.0
S (4	0.34	0.34	0.34	0,34	0.33	0,33	0.33
53	0.31	15.0	0.31	0.31	0.31	0.31	0.31
- 00	0,29	0.29	0.28	0.28	0,28	0,28	0.28
00 5	0.76	0,26	0.26	0,26	0.26	0.25	0.25
600	0.23	0.23	0,23	0.23	0.23	0.23	0.23
1 0	0.21	0.21	0.20	0.20	0.20	0.20	0.20
, c.	2 0	5.0	81.0 8 i	0.18	0.18	0,18	0.18
ייי ני	5 6	5 5	2 0	0.0	61.0	0.15	0.15
52	5 6	2 0	D.13	0.13	0.13	0.13	0.13
23.1	ο α ο ο	2 0	0 0	0 0	0.10	0,10	0,10
52	20.0	0000	0000	80.0	80.0	0.08	0.08
1.0	0.03	000		0.00	0.00	0.05	0.05
50	00) (000	2 6	200	70.0

NOTE: For negative values of Q₀ or Q₁. P₀ or P₁ is equal to 100 minus the table value for P₀ or P₁ or P₁ does not correspond exactly to a figure in the table, use the next higher figure.

AS	MPLE	REGUIRED QUALITY SAMPLE SIZE (n) AND	REQUIRED QUALITY LEVEL FOR A AMPLE SIZE (n) AND A GIVEN PAY I	LEVEL A GIVEI	EVEL FUR A GIVEN PAY	GIVEN FACTOR	N 0		SAME	REQUIRED AMPLE SIZE	E (n) AND	ND A G	LEVEL FOR A A GIVEN PAY I	REQUIRED QUALITY LEVEL FOR A GIVEN SAMPLE SIZE (n) AND A GIVEN PAY FACTOR	EN
PAY FACTOR n=3	3 n = 4	S= L	9 11 0	n = 7	8 = -	6 II C	n=10 to 11=11	PAY FACTOR	n = 12 to n = 14	n = 15 to = 14	n = 19 to n = 25	n = 26 to n = 37	n = 38 to n = 69	n = 70 to n = 300	n = 201 to n = ∞
1,05 1,04 90 1,03 80	0 100 0 91	100 92 87	100 93 88	100 93 89	100 93 90	100 94 91	100 94 91	1,05 1,04 1,03	100 95 92	100 95 93	100 96 93	100 .96 94	100 97 95	100 97 95	100 99 97
1,02 75 1,01 71	80 77 74	83 80 78	85 82 80	86 84 81	87 85 82	88 83 83 83	88 86 84 84	1,02 1,10 00,1	89 87 85	90 88 86	91 89 87	92 90 89	93 91	94 93 91	95 94 93
99 66 98 64 97 62	72 70 68	75 73 71	77 75 74	79 77 75	80 77	87 79 78	82 80 78	96. 86. 76.	83 80	85 83 81	86 84 83	87 85 84	88 87 85	90 88 87	8 9 8
.96 .95 .95 .94	66 63	69 99	72 70 68	73 72 70	75 73 72	76 74 73	77 75 47	96.95	78 77 75	80 78 77	81 80 78	83 81 80	84 83 81	86 85 83	88 87 86
93 92 92 55 91 91	61 60 58	65 63 62	67 65 64	69 67 66	70 69 67	71 70 68	72 71 69	.93 26: 19:	74 72 71	75 74 73	77 75 74	78 77 76	80 79 78	82 81 80	8 8 8
90 89 51 88 50	57 55 54	60 59 57	63 61 60	64 63 62	66 64 63	67 66 64	68 67 65	06: 88: 88:	70 68 67	71 70 69	73 72 70	75 73 72	76 75 74	79 77 76	80 79
87 48 86 47 85 46	53	56 53	58 57 56	60 59 58	62 60 59	63 62 60	64 61	.87 .86 .85	66 64 63	67 66 65	69 68 67	71 70 69	73 72 71	75 74 73	78 77 76
84 45 83 44 82 42	48 46	52 51 50	55 53 52	56 55 54	58 57 55	59 58 57	60 58 58	84 83 82	62 61 60	64 63 61	65 64 63	67 66 65	69 68 67	72 71 70	75 74 72
,81 40 ,80 40 ,79 38	45 44 43	48 47 46	51 50 48	53 52 50	54 53 52	56 53	57 55 54	.80 .80 .79	58 57 56	60 59 58	62 61 60	64 63 62	66 65 64	69 67 66	7.1 7.0 6.9
78 37 ,77 36 ,76 34	41 40 39	45 43 42	47 46 45	49 47 47	51 50 48	52 51 50	53 51	.78 .77. .76.	55 52 51	57 56 55	59 57 56	61 60 58	63 62 61	65 64 63	68 67 66
.75 33	38	41	44	46	47	49	20	.75 	51	53	55	57	59	29 0	59 25
REJECT QUALITY LEVELS LESS THAN THOSE SPECIFIED FOH A 0.75 NOTE: If the computed QUALITY LEVEL does not correspond exactly to a figure in the table, use the next lower value.	EVEL doe	ELS LESS	espond ey	actly to a	figure in	the table	(2)	NOTE: If the computed QUALITY LEVEL does not correspond exactly to a figure in the table, use the next lower value.	ALITY LEV	EL does no	ot correspo	ond exacti	y to a figur	e in the tat	ole,

ODOT's
Pay Adjustment Schedule
and Estimated Equation for Sample Size n=5

	Pay Schedule	Estimated Equation		
PD	PF	PF	ESTIMATED PAY E	OUATION
0	1.05	1.05	PF = 105 - 0.032 * PD	-
8	1.04	1.04		
13	1.03	1.03		
17	1.02	1.02		
20	1.01	1.01	OCPLOT	Results
22	1.00	1.01	Gerbor	TCBarts
26	0.99	0.99	\underline{PD}	Ave. PF
28	0.98	0.98		1.05
30	0.97	0.97	0	1.05
32	0.96	0.96	5	1.041
33	0.95	0.96	10 AQL	1.029
35	0.94	0.95	15	1.018
36	0.93	0.94	20	1.004
38	0.92	0.93	25	0.985
39	0.91	0.92	30	0.957
41	0.90	0.91	35	0.922
42	0.89	0.90	40 45	0.887
44	0.88	0.89	50	0.854
45	0.87	0.88	55	0.823 0.796
46	0.86	0.87	60	0.796
48	0.85	0.86	65	0.765
49	0.84	0.85	03	0.763
50	0.83	0.85		
51	0.82	0.84		
53	0.81	0.82		
54	0.80	0.81		
55	0.79	0.81		
56	0.78	0.80		
57	0.77	0.79		
58	0.76	0.78		
59	0.75	0.77		

ODOT's
Pay Adjustment Schedule
and Estimated Equation for Sample Size n=10 to 11

		Pay Schedule	Estimated Equation		
<u>PWL</u>	PD	<u>PF</u>	\underline{PF}	ESTIMATED F	PAY EQUATION
100	0	1.05	1.05	PF = 105 - 0.06	_
94	6	1.04	1.04		
91	9	1.03	1.03		
88	12	1.02	1.02		
86	14	1.01	1.01	OCPL	OT Results
84	16	1.00	1.00	<u> </u>	O I Teobardo
82	18	0.99	0.99	PD	Ave. PF
80	20	0.98	0.98	_	1.05
78	22	0.97	0.97	0	1.05
77	23	0.96	0.96	5	1.038
75	25	0.95	0.95	10	1.021
74	26	0.94	0.94	15	0.999
72	28	0.93	0.93	20	0.978
71	29	0.92	0.92	25	0.96
69	31	0.91	0.91	30	0.928
68	32	0.90	0.90	35	0.889
67	33	0.89	0.89	40	0.85
65	35	0.88	0.88	45	0.811
64	36	0.87	0.87	50	0.776
63	37	0.86	0.86	55	0.764
61	39	0.85	0.85		
60	40	0.84	0.84		
59	41	0.83	0.83		
58	42	0.82	0.82		
57	43	0.81	0.81		
55	45	0.80	0.80		
54	46	0.79	0.79		
53	47	0.78	0.78		
52	48	0.77	0.77		
51	49	0.76	0.76		
50	50	0.75	0.75		

ODOT's
Pay Adjustment Schedule
and Estimated Equation for Sample Size n=70 to 200

		Pay Schedule	Estimated Equation			
<u>PWL</u>	<u>PD</u>	\underline{PF}	\underline{PF}	ESTIMAT	ED PAY	'EQUATION
100	0	1.05	1.05			* PD^1.2389
97	3	1.04	1.04	11 100	0.020	12 1.2505
95	5	1.03	1.03			
94	6	1.02	1.02			
93	7	1.01	1.01			
91	9	1.00	1.00	<u>C</u>	CPLOT	Results
90	10	0.99	0.99	PD		Ave. PF
88	12	0.98	0.98	10		Avc.11
87	13	0.97	0.97	0		1.05
86	14	0.96	0.96	5	AQL	1.027
85	15	0.95	0.96	10		0.995
83	17	0.94	0.94	15		0.959
82	18	0.93	0.93	20		0.919
81	19	0.92	0.92	25		0.877
80	20	0.91	0.92	30		0.841
79	21	0.90	0.91	35		0.805
77	23	0.89	0.89	40		0.762
76	24	0.88	0.88			
75	25	0.87	0.87			
74	26	0.86	0.86			
73	27	0.85	0.85			
72	28	0.84	0.85			
71	29	0.83	0.84			
70	30	0.82	0.83			
69	31	0.82	0.82			
67	33	0.80	0.80			
66	34	0.79	0.79			
65	35	0.78	0.78			
64	36	0.77	0.77			
63	37	0.76	0.76			
62	38	0.75	0.75			

APPENDIX F $C_{pk} ANALYSIS$

C_{pk} ANALYSIS

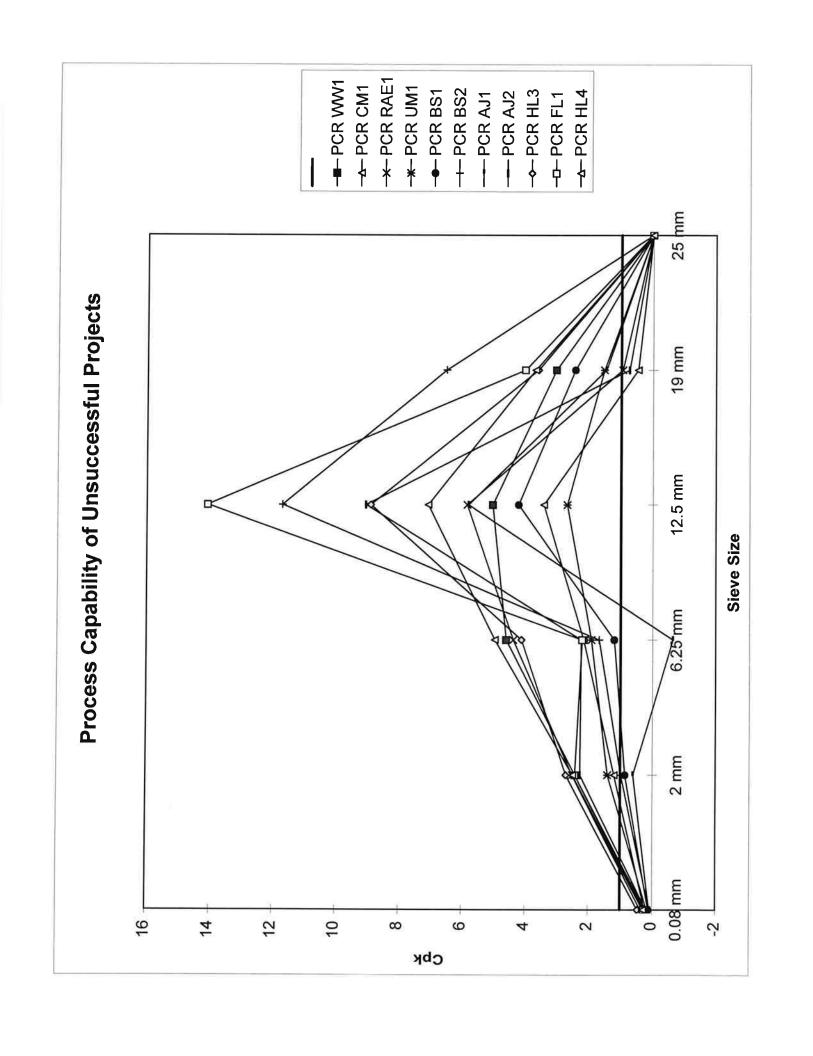
 C_{pk} is a performance index which reflects the current process mean's proximity to either the upper specification limit or lower specification limit. In order to determine the greatest opportunities for contractor process capability improvement, C_{pk} values were calculated for the following sieves: .075 mm (#200), 2 mm (#10), 6.25 mm (1/4 inch), 12.5 mm (1/2 inch), 19 mm (3/4 inch), and 25 mm (1 inch).

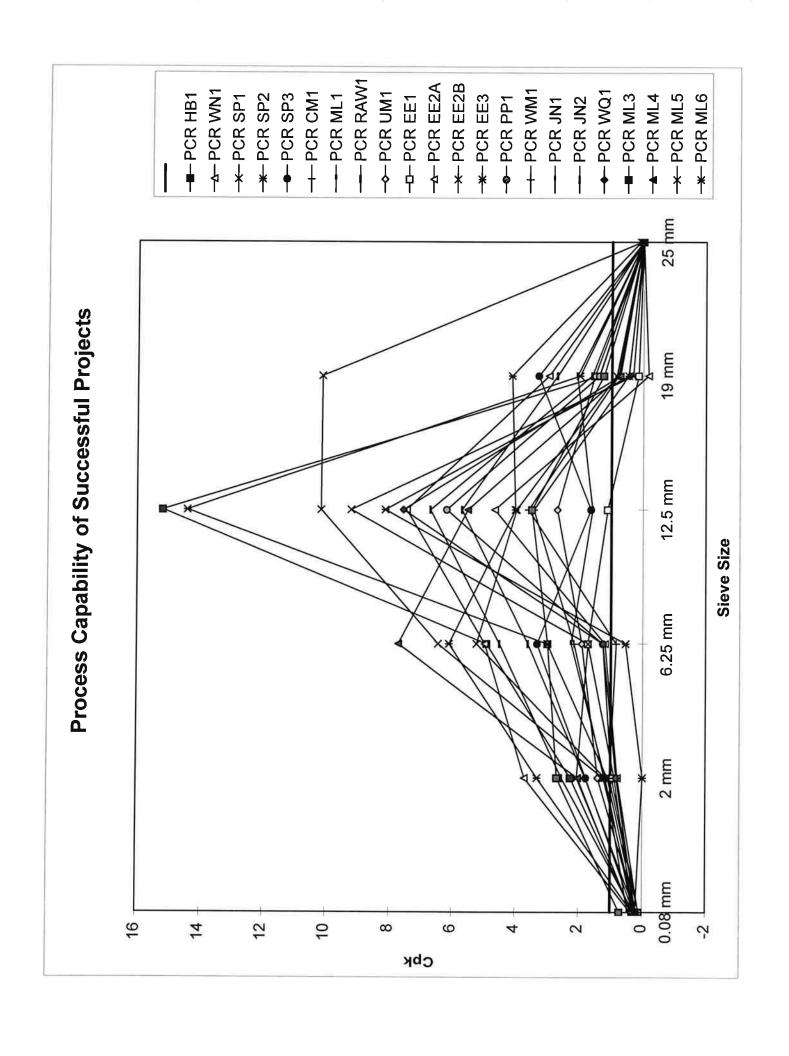
 C_{pk} is calculated by the following equation:

$$C_{pk} = \min \left[\frac{\overline{X} - LSL}{3s}, \frac{USL - \overline{X}}{3s} \right]$$

s = sample standard deviation

 \overline{X} = arithmetic mean


LSL = lower specification limit USL = upper specification limit


A value of C_{pk} less than 1.0 indicates that one should expect more than a small percentage of the values for this factor would be outside the specification limits.

These C_{pk} values were graphed for both "successful" and "unsuccessful" projects. "Successful" projects were defined as projects which did not require core analysis and "unsuccessful" projects were defined as those requiring core analysis. The purpose in graphing the C_{pk} values was to look for patterns and to see if there were significant differences in the patterns of successful versus unsuccessful projects. As can be seen from the following charts, the patterns for successful and unsuccessful projects were very similar. Please note that the values of C_{pk} do NOT represent a continuous distribution. Rather, values are connected by lines to indicate a particular project.

As previously mentioned, values of C_{pk} less than 1.0 indicate an opportunity for improving process capability. However, C_{pk} values of 0 indicate that there is no problem with process capability as is the case with the 25 mm (1 inch) sieve.

 \underline{ALL} of the C_{pk} values for the 0.75 mm (#200) sieve were less than 1.0 and not equal to zero. This indicates a significant opportunity for improvement. Similarly, the 19 mm (3/4 inch) and 2 mm (#10) sieves showed some difficulties with process capabilities (some C_{pk} values less than 1.0) and, therefore, should not be removed from consideration.

APPENDIX G

PAY FACTORS FOR PRIOR PROJECTS USING RECOMMENDED PAY FACTOR WEIGHTS

PAY FACTORS FOR PRIOR PROJECTS USING RECOMMENDED PAY FACTOR WEIGHTS

While the Technical Advisory Committee requested that this analysis be done, please note that conclusions can <u>NOT</u> be drawn from this analysis. The purpose of pay factors is to influence contractors to focus on improving performance on factors that impact pavement performance. Therefore, one can not assess the impact of a pay factor change without the corresponding influence on contractor behavior.

The following pages include detailed listing of the prior projects, the original composite pay factor, and the alternative composite pay factors.

IMPACT OF CHANGES TO PAY FACTOR WEIGHTS FOR "F" MIXTURE LOTS

CONT	TOMO CHOT	1000								2							- 1	
NO	SNO L		5 5	# SUB	ŀ			- 1	PA PA	PAY FACTORS	RS				Current	ALT 1	ALT 2	ALT 3
SECTION	OF MIX ADJU	'∹ III	2∥	FOLS	-	3/4	1/2	4	위	8	500	ASP	ASPH MOIS	COMP	CPF	CPF	CPF	CPF
11285 42nd St - McKenzie Hwy	12483	1700	က	25	1.05	1.05	1.02	0.95	1.03	1.00	1.05	1.01	0.98	1.00	1.006	1.012	1.013	1.012
11228 Airport Rd - Pacific Hwy W	11115	6710	-	23	1.05	1.05	1.01	1.04	1.05	1.05	1.05	1.04	1.05	1.00	1.025	1.042	1.041	1.044
10864 Applegate R Br - MP 9.2	3543	-7529	-	7	1.05	0.00	0.00	0.00	0.84	1.00	1.05	0.94	1.05	1.00	0.916	0.641	0.613	0.723
11205 Arch Cape Tunnel - Short Sand Dr	7355	4766	~	15	1.05	1.05	0.98	1.03	1.04	1.00	1.05	1.04	1.05	1.00	1.024	1.036	1.035	1.039
11186 Arlington - Cedar Springs Rd	1491	-2198	_	က	1.05	0.82	1.05	1.03	1.02	1.00	1.05	1.04	0.00	1.00	0.937	0.925	0.919	0.923
11344 Azalea Jumpoff Joe	6771	-12714	-	7	1.05	1.04	0.97	0.00	1.05	1.00	1.05	0.92	1.05	1.00	0.941	0.848	0.873	0.849
11344 Azalea Jumpoff Joe	79703	46148	7	80	1.05	1.02	0.90	0.95	1.05	1.00	1.05	1.04	1.05	1.00	1.019	1.016	1.013	1.023
10930 Baldock Slough - S Baker Intch	45596	16552	-	91	1.05	1.01	1.00	0.93	1.05	1.00	1.05	1.02	1.05	1.00	1.014	1.016	1.016	1.019
10930 Baldock Slough - S Baker Intch	2139	1202	7	2	1.05	1.04	0.99	1.04	1.05	1.00	1.05	1.05	1.05	1,00	1.027	1.042	1.040	1.045
11365 Battle Cr Intch - N Jefferson Intch	19028	13218	-	38	1.05	1.05	1.05	1.03	1.05	1.00	1.05	1.03	1.03	1.00	1.021	1.040	1.040	1.039
11365 Battle Cr Intch - N Jefferson Intch	11867	10992	7	12	1.05	1.04	1.05	1.04	1,05	1.00	1.05	1.05	1.05	1.00	1.028	1.048	1.048	1.048
11365 Battle Cr Intch - N Jefferson Intch	1466	485	ო	ღ	1.05	1.05	1.05	1,05	1.03	1.00	1.05	1.00	1.00	1.00	1.010	1.029	1.028	1.027
11449 Bear Cr Rd - Alder Cr	8329	6545		6	1.05	1.05	1.04	1.05	1.05	1.00	1.05	1.05	1.05	1.00	1.028	1.049	1.049	1.050
11138 Belt Line Hwy - Barger Ave (Eug)	5487	2682	-	11	1.05	1.04	1.04	0.99	1.04	1.00	1.05	1.05	1.01	1.00	1.022	1.034	1.036	1,035
11165 Boulder Flat - Fish Cr Br	5048	3347	-	10	1.05	1.03	96.0	1.05	1.05	1.00	1,05	1.04	1.03	1.00	1.023	1.036	1.032	1.040
10961 Brookman Rd - Garland Rd	4808	2123	-	10	1.05	1.04	0.89	1.02	1.05	1.00	1.05	1.03	1.04	1.00	1.019	1.024	1.019	1.030
11296 Brooten Rd - Little Nestucca R	3614	2485	-	7	1.05	1.01	0.95	1.03	1.05	1.00	1.05	1.04	1.05	1.00	1.024	1.032	1.028	1.037
10653 Camas Mt Wayside - Muns Cr	6310	3372	F.	13	1.05	0.00	1.03	1.03	1.05	1.00	1.05	1.05	1.05	1.00	1.017	0.951	0.919	0.994
10846 Camas Valley - Camas Mt Wayside	16266	10178	-	32	1.05	1.04	0.86	1.05	1.05	1.00	1.05	1.04	1.05	1.00	1.024	1,029	1.023	1.037
10599 Cape Sebastian - Myers Cr Rd	4029	1250	-	ω	1.05	1.04	1.01	0.90	1.05	1.00	1.05	1.00	1.05	1.00	1.011	1.009	1.011	1.010
11302 Cedar Hills Blvd Intch Aux Lane	3895	1744		00	1.05	1,05	1.01	1.04	1.05	1.00	1.05	1.01	1.04	1.00	1.016	1.033	1.031	1.034
11427 Cent Ore Preservation Pro (1994)	35198	26343	-	35	1.05	1.04	1.02	1.03	1.05	1.00	1.05	1.05	1.05	1.00	1.027	1.043	1.043	1.045
10743 Chemult - Lenz Rd	17330	-1043	됴	37	1.05	1.05	96.0	0.99	1.04	1.00	96.0	0.98	1.05	1.00	0.997	0.998	0.998	966.0
10743 Chemult - Lenz Rd	10528	1242	F2	21	1.05	1.04	1.04	1.03	1.05	1.00	1.04	0.97	1.05	1.00	1.006	1.021	1,019	1.020
10743 Chemult - Lenz Rd	37725	-8873	F3	75	1.05	0.99	0.98	0.94	1.04	1.00	1.02	0.95	1.05	1.00	0.992	0.988	0.985	0.990
10726 Clackamas/Boring - 362nd Dr	7872	4920	7	16	1.05	1.05	1.03	1.05	1.05	1.00	1.04	1.04	1.05	1.00	1.025	1.044	1.043	1.044
10726 Clackamas/Boring - 362nd Dr	4483	3001	က	6	1.05	1.05	96.0	1.04	1.05	1.00	1.05	1.04	1,05	1.00	1.025	1.038	1.035	1.041
10750 Coast Range Summit - Jewell Jct	11758	6926	7	23	1.05	1.05	1.04	06.0	1.02	1.00	1.05	1.05	1.05	1.00	1.019	1,022	1.027	1.023
11013 Coquille Reroute	7258	7917	7	15	1.05	1.04	0.97	1.05	1.05	1.00	1.05	1.05	1.04	1.00	1.027	1.041	1.038	1.045
10939 Corbett Intch - Multnomah Falls	37511	-62861	4	75	1.05	0.89	0.97	1.02	1.05	1.00	1.05	1.00	0.00	1.00	0.930	0.915	0.908	0.914
10917 Corvallis By-Pass (S Unit)	1741	1207	~	ო	1.05	1.05	1.05	1.05	1.05	1.00	1.05	1.05	1.05	1.00	1.028	1.050	1.050	1.050
10883 Corvallis ECL - NW Rondo St	13152	1538	-	27	1.05	1.03	0.84	0.90	1.04	1.00	1.05	1.00	1.05	1.00	1.005	0.991	0.988	1.000
10566 Crater Lake Hwy - Brownsboro	22774	804	F1	46	1.05	1.05	0.00	0.87	1.05	1.00	1.05	1.01	1.05	1.00	1.002	0.917	0.890	0.959
11333 Depoe Bay Br - NE 54th St	28284	15370	~	26	1.05	96.0	0.98	1.02	1.04	1.00	1.05	1.04	1.05	1.00	1.022	1.027	1.023	1.033
11271 Deschutes R - US 97	10745	6249	-	21	1.05	1.05	1.01	1.04	1.05	1.00	1.05	1.03	1.05	1.00	1.022	1.039	1.038	1.041
11044 Dist 4 Overlay Projects (1991)	7918	3665	-	15	1.05	1.05	1.05	1.02	1.05	1.00	1.05	1.05	0.98	1.00	1.021	1.039	1.040	1.039
10761 Dist 5 Overlay Project	3547	610	_	7	1.05	1,05	0.80	0.77	1.05	1.00	1.04	1.04	1.05	1.00	1.008	0.981	0.982	0.991
				0	7	9 40												

Page 1 of 6

IMPACT OF CHANGES TO PAY FACTOR WEIGHTS FOR "F" MIXTURE LOTS

TINOS	01101									$\ $								
	CONS	PRICE	5	# SUB					PAY FACTORS	CTOR	-20			15.25	Current	ALT 1	ALT 2	ALT 3
N	OF MIX AD	S	2	LOTS	-	3/4	12	4	9	40	200	ASPH MOIS		COMP	CPF	CPF	CPF	CPF
10761 Dist 5 Overlay Project	13735	591	2	27	1.05	1.05	1.00	0.90	1.04	1.00	1.05	0.98	1.05	8.	1.002	1.002	1.003	1.003
10763 Dist 5 Overlay Project	4778	1391	4	10	1.05	1.05	1.05	1.05	1.05	1.00	1.05	1.05	0.85	1.00	1.013	1.032	1.032	1.030
10872 Dist 5 Overlay Project (1990)	21416	9034	2	44	1.05	1.05	1.04	1.04	1.05	1,00	1.05	1.04	96.0	1,00	1.018	1.037	1.036	1.036
11037 Dist 5 Overlay Projects (1991)	11231	4525	_	22	1.05	1.05	0.87	0.97	0.94	1.00	1.05	1.05	1.05	1.00	1.017	1.005	1.006	1.013
10256 Dist 5 Paving Projects	16154	1541	7	32	1.05	1.05	1.01	1.03	1.04	1.05	1.04	0.97	1.02	1.00	1.004	1.015	1.013	1.015
10620 Dist 6 Overlay	4568	1455	-	6	1.05	1.05	1.02	1.04	0.92	1.00	1.05	1.01	1.05	1.00	1.011	1.015	1.017	1.016
10620 Dist 6 Overlay	4724	2598	7	6	1.05	1.05	1.05	1.04	1.03	1.00	1.05	1.02	1.05	1.00	1.019	1.037	1.037	1.037
	8327	9099	_	œ	1.05	1.05	1.05	1.04	1.05	1.00	1.05	1.05	1.05	1.00	1.028	1.049	1.049	1.049
	2444	2062	_	2	1.05	1.05	1.04	1.05	1.05	1.00	1.05	1.05	1.05	1.00	1.028	1.049	1.049	1.050
	9641	6100	7	19	1.05	1.05	1.05	1.05	1.05	1.00	1.05	1.05	96.0	1.00	1.021	1.042	1.042	1.041
	11645	8407	_	23	1.05	1.04	1.03	1.02	1.02	1.00	1.05	1.05	1.03	1.00	1.024	1.037	1.037	1.038
	4197	818	_	∞	1.05	1.05	1.01	1.04	1.05	1.00	1.05	1.04	0.83	1.00	1.007	1.022	1.021	1.022
	13493	8786	2	27	1.05	1.04	0.92	1.04	1.05	1.00	1.05	1.04	1.05	1.00	1.024	1.033	1.029	1.039
	2267	63	က	5	1.05	1.04	0.90	1.05	1.05	1.00	1.05	26.0	0.99	1.00	1.001	1.008	1.001	1.012
	5795	-9154	Ξ	12	1.05	96.0	0.93	0.00	1.00	1.00	1.05	0.99	0.89	1.00	0.943	0.835	0.860	0.841
11188 Dist 8 Overlay Project	6633	2745	-	13	1.05	0.93	0.94	1.05	1.05	1.00	1.05	1.00	1.05	1.00	1.013	1.015	1.007	1.024
10433 Dist 8 Paving Projects	3124	1946	7	9	1.05	1.02	1.02	1,05	1.05	1.00	1.05	1.03	1.05	9.	1.023	1.039	1.037	1.041
10433 Dist 8 Paving Projects	5613	756	က	12	1.05	98.0	0.98	1.02	1.05	1.00	96.0	1.00	1.05	1.00	1.005	0.998	0.991	1.004
10870 Dooley Br - Cannon Beach Jct	3011	2438	-	9	1.05	1.00	0.94	1.03	1.05	1.00	1.05	1.05	1.05	1.00	1.026	1.033	1.028	1.039
	91820	41911	-	183	1.05	1.02	0.98	0.85	1.05	1.00	1.05	1.05	1.04	1.00	1.017	1.010	1.013	1.014
	13903	10822	-	14	1.05	1.05	1.04	1.05	1.05	1.00	1.05	1.05	1.03	1.00	1.027	1.047	1.047	1.048
	11406	7139	-	23	1.05	0.84	0.88	1.03	1.05	1.00	1.05	1.05	1.05	1.00	1.024	1.013	1.002	1.028
	2079	1720	က	4	1.05	1.00	1.03	1.05	1.05	1.00	1.05	1,05	1.05	9.1	1.028	1.044	1.042	1.047
	5654	165	5 A	12	1.05	0.00	0.98	0.99	1.05	1.00	1.05	1.00	1.05	1.00	1.001	0.926	0.893	0.970
11119 E Pendleton Int - Emigrant Hill	20613	9137	2B	4	1.05	0.84	0.93	1.01	1.05	1.00	1.05	1.02	1.05	90.	1.015	1.006	966.0	1.019
11220 E Side Bypass (KF) Phase 1	1291	2060	τ-	က	1.05	1.02	0.88	1.05	1.05	1.05	1.05	1.05	1.05	90.	1.028	1.032	1.026	1.040
	1020	1802	-	ო	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.00	1.030	1.050	1.050	1.050
	8931	7551	-	17	1,05	1.02	0.98	1.05	1.05	1.00	1.05	1.04	1.05	00.1	1.025	1.038	1.035	1.042
	6385	3948	-	12	1.05	1.04	1.04	1.04	1.05	1.00	1.05	1.02	1.05	1.00	1.020	1.038	1.037	1.039
11303 ECL Gates - Little Sweden	8473	2680	-	17	1.05	1.05	1.00	1.03	1.04	1.00	1.05	1.05	1.05	99.	1.027	1.041	1.040	1.043
11343 Elkhead Rd Int - Rice Hill Int	15541	7889	-	15	1.05	1.05	1.04	1.04	1.04	1.00	1.05	1.00	1.04	1.00	1.014	1.031	1.030	1.031
10704 Emigrant Cr - MP 4	4020	953	Ε	∞	1.05	1.05	0.97	0.88	1.05	1.00	1.05	1.02	1.05	1.00	1.011	1.009	1.011	1.012
11448 Emigrant Lake - Green Springs Hwy	6336	4273	-	9	1.03	1.05	1.03	1.05	1.05	00.1	1.05	1.04	1.05	1.00	1.026	1.045	1.045	1.046
11460 Enid Rd - Beltline Hwy	7631	139	2	16	1.05	1.05	0.82	1.03	1.05	1.00	1.05	26.0	1.01	1.00	1,001	1.000	0.992	1.008
10924 Farewell Bend - Olds Ferry Intch	12632	10762	-	25	1.04	1.01	0.97	1.01	1.00	1.05	1.05	1.04	1.05	00.1	1.024	1.023	1.022	1.028
10951 Fir Grove Ln - Tower Rd	8779	3378	_	17	1.05	96.0	0.95	1.04	1.04	1.00	1.05	1.02	1.05	1.00	1.018	1.022	1.016	1.029

U
RELOTS
<u> </u>
Ē
$\stackrel{\sim}{=}$
Ē
Ξ
A.
П
Ç.
노
<u>U</u>
Ц
>
CH
FACTOR WEIGHTS FOR
A
/ F/
A
Д.
0
NGES TO
H
ž
¥
$\overline{\circ}$
一
PACT OF C
$\overline{\mathcal{O}}$
A
≧

TOO	OIACE	r																
NOTECTO	CNO	TRICE TI	3	# SOB				- 1	PAY FACTORS	4CTO	SS				Current	ALT 1	ALT 2	ALT 3
NO SECTION	OF MIX ADJUST (\$)	(\$)	ଥ∥	LOTS	-	3/4	1/2	1/4	9	4	200	ASPF	ASPH MOIS	COMP	CPF	CPF	CPF	CPF
10754 Fish Cr - Chinguapin Cr	7635	-248	-	15	1.05	1.04	1.02	0.94	0.99	1.00	1,05	0.97	1.05	1.00	0.999	0.999	1.000	0.999
10805 Forest Boundary - Rice Hill	4912	2697	2	10	1.05	1,05	1.04	1.05	1.05	1.00	1.05	1.03	0.98	1.00	1.018	1.037	1.036	1.037
10972 Forge Rd - Lobert (N Unit)	23607	788	-	47	1.05	1.05	1.01	1.04	1.05	1.00	1.05	0.95	1.04	1.00	1.001	1.016	1.012	1.016
10874 Forge Rd - Lobert (S Unit)	8629	4459	-	17	1.05	1.0	0.82	1.03	1.04	1.00	1.05	1.02	1.05	1.00	1.017	1.013	1.005	1.023
10778 Fort Hill - Wallace Br	7812	4966	-	16	1.05	1.05	1.04	1.04	1.05	1.00	1.05	1.05	1.02	1.00	1.026	1.045	1.045	1.045
	14345	13183	_	29	1.05	1.04	1.04	1.05	1.05	1.00	1.05	1.05	1.05	1.00	1.028	1.048	1.048	1.049
10780 Frog Lake - MP 83.0	1426	-1214	4	က	1.05	1.00	1.05	0.00	1.05	1.00	1.05	1.02	1.05	1.00	0.968	0.880	0.909	0.881
10780 Frog Lake - MP 83.0	14172	-29177	2	29	1.05	0.96	0.88	0.00	1.04	1.00	1.05	0.92	1,05	1.00	0.939	0.831	0.851	0.839
	8629	4429	Ŧ	18	1.05	1.01	0.82	1.03	1.04	1.00	1.05	1.02	1.05	1.00	1.017	1.013	1.005	1.023
	4634	-1828	~	6	1.05	1.03	1.03	0.00	0.89	1.00	1.05	1,04	1.05	1.00	0.986	0.862	0.897	0.864
11187 Golden Cr - Weatherly Cr	5890	3237	7-	12	1.05	1.05	0.92	1.03	1.04	1.00	1.02	1.04	1.05	1.00	1.020	1.027	1.024	1.030
10766 Hackett Dr - Gilchrist	11819	5290	-	23	1,05	1.05	1.01	96.0	1.05	1.00	1.01	1.02	1.05	1.00	1.012	1.019	1.020	1.018
11294 Halsey Int Lane Co. Line, Lot 3	25528	4325	ო	52	1.05	1.04	0.93	0.94	1.04	1.00	1.05	1.00	1.04	1.00	1.007	1.005	1.004	1.010
11294 Halsey Int Lane Co. Line, Lot 4	38064	8140	4	75	1.05	1.05	0.99	1.00	1.04	1.00	1.05	1.00	1.01	1.00	1.009	1.018	1.017	1.019
10923 Hancock Hill Passing Lane	2742	1596	_	9	1.05	1.05	0.78	1.05	1.04	1.00	1.05	1.04	1.05	1.00	1.023	1.021	1.013	1.032
10760 Hayden Mt Pass	10629	-8810	_	21	1.05	0.87	0.83	0.00	1.05	1.00	1.04	1.05	0.97	1.00	0.965	0.848	0.868	0.863
10941 Hayesville - Battle Cr	37613	9692-	-	11	1.05	0.84	0.00	0.93	1.05	1.00	1.05	0.97	1.05	1.00	0.989	0.896	0.860	0.945
10601 Hendricks Rd - Pacific Hwy	4493	-1043	-	တ	1.05	1.03	0.88	0.83	0.95	1.00	1.02	96.0	1.05	1.00	0.989	0.955	0.957	0.960
10839 Hoover Hill Rd - Brockway Rd	5137	2460	Ξ	10	1.05	1.02	0.94	0.98	1.05	1.00	1.05	1.03	1.05	1.00	1.018	1.021	1.019	1.027
10948 Imbler - Elgin (Climbing Lane)	2076	290	_	4	1.05	0.85	0.90	0.89	1.00	1.00	1.05	1.01	1.05	1.00	1.004	0.976	0.970	0.989
10948 Imbler - Elgin (Climbing Lane)	1895	973	7	4	1.05	0.90	1.03	1.01	1.04	1.00	1.05	1.03	1.00	1.00	1.015	1.017	1.013	1.023
10948 Imbler - Elgin (Climbing Lane)	2341	1344	ო	2	1.05	0.77	0.87	1.02	1.05	1.00	1.05	1.03	1.05	1.00	1.017	0.999	0.985	1.017
10210 Jackson Co Paving Project	5629	3307	~	1	1.05	1.05	0.88	1.04	1.05	1.05	1.05	1.04	1.05	1.00	1.025	1,030	1.025	1.037
10239 Jenny Ck - Parker Mt Summit	6235	4088	-	12	1.05	1.05	1.00	1.04	1.01	1.05	1.05	1,04	1.02	1.00	1.022	1.033	1.032	1.034
10600 Johnson Cr - Cameron Rd	10499	5021	-	21	1.05	0.90	1.02	0.94	1.04	1.00	1.05	1.04	1.05	1.00	1.020	1.013	1.011	1.020
11065 Jumpoff Joe Cr - N Grants Pass	16399	0	-	33	1.05	0.91	0.85	0.84	1.0	1.00	1.05	1.00	1.05	1.00	1.000	0.968	0.964	0.981
11065 Jumpoff Joe Cr - N Grants Pass	51608	27961	7	101	1.05	1.03	0.98	0.98	1.04	1.00	1.05	1.04	1.05	1.00	1.021	1.027	1.027	1.031
11423 Juniper Butte - Crooked R	9227	7480	τ-	10	1.05	1.05	1.00	1.00	1.05	1.00	1.05	1.05	1.05	1.00	1.026	1.038	1.038	1.040
11270 Kah-nee-ta Jct - Pelton Dam Rd	16183	10729	_	32	1.05	1.05	1.03	1.00	1.05	1.00	1.05	1.05	1.05	1.00	1.026	1.041	1.042	1.042
11360 Kah-nee-ta Jct - Pelton Dam Rd	5989	3847	7	11	1.05	1.05	1.04	0.88	1.04	1.00	1.05	1.05	1.05	1,00	1.019	1.022	1.027	1.023
10818 Kern Swamp Rd - Weyerhaeuser Rd	6418	-10484	T	13	1.05	1.00	0.80	0.93	0.00	1.00	0.87	1.04	1,05	1.00	0.945	0.818	0.849	0.821
11077 Kiwa Springs - Mt Bachelor	29012	17366	-	22	1.05	1.04	0.99	0.95	1.04	1.00	1.05	1.04	1.05	1.00	1.020	1.024	1.025	1.027
11077 Kiwa Springs - Mt Bachelor	2109	92	7	4	1.05	1.05	0.79	0.86	1.01	1.00	1.05	1.00	1.05	1.00	1.001	0.978	0.976	0.988
11351 Klamath Falls/Malin - Green Springs	19411	17756	7	19	1.05	1.04	1.04	1.05	1.05	1.00	1.05	1.05	1.03	1.00	1,027	1,046	1.046	1.047
10927 Lava Lk Meadows - Santiam Summit	30098	18027	თ	09	1.05	1.05	1.03	1.04	1.05	1.00	1.05	1.05	1.05	1.00	1.028	1.047	1.046	1.048
10777 Little N Fork Rd - MP 25	4057	3249	ო	∞	1.05	1.05	1.05	1.04	1.05	1.00	1.05	1.05	1.05	1.00	1.028	1.049	1.049	1.049

C.
URFIOTS
_
T T
Ξ
\succeq
Σ
Ļ
2
FO
S
王
9
\geq
2
2
Q
◁
Ā
AY FA
) PAY FA
TO PAY FA
ES TO PAY FA
IGES TO PAY FA
ANGES TO PAY FA
CHANGES TO PAY FA
OF CHANGES TO PAY FACTOR WEIGHTS FOR "F" MIXTURE I
Γ OF CHANGES TO PAY FA
ICT OF CHANGES TO PAY FA
PACT OF CHANGES TO PAY FA
IMPACT OF CHANGES TO PAY FA

TNOO																		
INDO		PRICE	5	# SUB					PAY FACTORS	CTOR	S				Current	ALT 1	ALT 2	ALT 3
NO SECTION	OF MIX ADJUST (\$)	SJUST (\$)	일	LOTS	,	3/4	1/2	1/4	10	40	200	ASPH	ASPH MOIS	COMP	CPF	CPF	CPF	CPF
10777 Little N Fork Rd - MP 25	1284	571	4	က	0,94	0.91	0.92	0.88	1.05	90.	1.05	1.05	1.05	1.00	1.016	1.000	0.997	1.011
10673 Longwood Dr - Winchester Bay	3872	1751	Ξ	7	1.05	1,05	1.04	0.82	1.04	1.00	1.05	1.03	1.05	1.00	1.016	1.008	1.014	1.008
10465 Lower Salt Cr - Upper Salt Cr	7263	4306	'-	15	1.05	1.05	1,04	1.05	1.03	1.00	1.04	1.04	1.05	1.00	1.024	1.042	1.042	1.042
11342 Maller Rd - Glencoe Rd	28241	15420	က	52	1.05	1.05	0.92	1.03	1.05	1.00	1,05	1.04	1.05	1.00	1.024	1.033	1.029	1.038
11243 McKenzie Hwy Passing Bays	4543	1262	3	6	1.05	1.05	1.01	0.98	1.05	1.00	1.05	1.05	0.85	1.00	1.009	1.018	1.019	1.018
11095 Mill City - Gates	4388	2873	Υ-	00	1.05	1.03	1.05	1.05	1.05	1.00	1.05	1.04	1,05	1.00	1.026	1.045	1.045	1.046
10790 Mill City - Gun Cr	9290	4552	4	19	1.05	1.05	0.94	0.93	1.05	1.00	1,05	1.05	1.05	1.00	1.021	1.022	1,022	1.027
11192 Minnie Cr - Butcher Knife Cr	8358	3855	-	17	1.05	1.02	0.81	0.85	1.04	1.00	1.05	1.05	1.05	1.00	1.015	0.994	0.992	1.005
11189 MP 34.62 - MP 45.40	19695	8483	7	39	1.05	1.05	1.01	1.03	1.05	1.00	1.05	1.02	1.05	1.00	1.019	1.035	1,034	1.036
11269 MP 66.9 - Jct Wapinitia Hwy	14747	9075	ო	28	1.05	1.01	1.02	1.04	1.05	1.00	1.05	1.02	1.05	1.00	1.020	1.034	1.031	1.036
11422 Multnomah Falls - Cascade Locks	9131	0999	7	თ	1.05	1.05	1.05	1.04	1.05	1.00	1.05	1.05	1.03	1.00	1.026	1.047	1.047	1.047
11422 Multnomah Fails - Cascade Locks	67262	37734	က	29	1.05	1.05	1.03	0.97	1.05	1.00	1.05	1.05	0.99	1.00	1.020	1.031	1.033	1.031
10462 Murphy Rd - Lava Butte	6303	3372	က	13	1.05	1.04	0.93	1.05	1.04	1.00	1.03	1.04	1.03	1.00	1.020	1.029	1.026	1.033
10462 Murphy Rd - Lava Butte	7279	-1017	4	5	1.05	1.05	1.04	1.03	1.05	1.00	1.05	0.93	1.02	1.0	0.994	1.010	1.007	1.008
10462 Murphy Rd - Lava Butte	5596	2311	2	Ξ	1.05	1.05	40.1	1.04	1.05	1.00	1.05	1.00	1.04	1.00	1.014	1.033	1.031	1.032
10462 Murphy Rd - Lava Butte	1644	1212	9	ო	1.05	1.03	0.99	1.05	1.05	1.00	1.05	1.04	1.05	1.00	1.025	1.040	1.037	1.043
11001 Murray Blvd - Fanno Cr	10428	930	-	20	1.00	1.05	1.00	1.05	1.03	1.00	1.05	96.0	1.05	1.00	1.003	1.017	1.014	1.018
11110 Myrtle Pt SCL - Powers Jct	3496	2784	7	7	1.05	1.05	1.03	1.03	1.05	1.00	1.05	1.05	1.05	1.00	1.027	1.045	1.045	1.046
10719 N Fork Coquille R - Myrtle R	3688	-8206	Ξ	7	1.05	1.04	1.04	0.84	0.91	1.00	1.05	1.04	0.00	1.00	0.924	0.898	0.908	0.889
10980 N Jefferson Int - N Albany Int	20601	5420	_	42	1.05	1.05	1.01	1.04	1.04	1.00	1.05	1.00	1.00	1.00	1.010	1.025	1.023	1.025
	10687	3474	-	22	1.05	1.05	96.0	1.01	66.0	1.00	1.05	1.02	1.05	1.00	1.015	1.019	1.018	1.022
	7346	3312	_	4	1.05	1.05	06.0	66.0	1.04	1.00	1.05	1.05	1.00	1.00	1.020	1.022	1.019	1.027
	1872	1573	ო	က	1.05	1.02	1.02	1.05	1.05	1.00	1.05	1.05	1.05	1.00	1.028	1.045	1.043	1.047
11087 NE 181st Ave - Troutdale Overlay	1731	3182	4	4	1,05	1.05	1.05	1.03	1,05	1,00	1.05	1.05	1.05	1.00	1.028	1.047	1.048	1.047
11305 Nedonna Beach Rd - Barview	11608	7689	_	12	1.05	1.05	96.0	1.03	1.00	1.00	1.05	1,05	1.05	1.00	1.024	1.031	1.031	1.035
11439 Nicholson Rd - Kanpp Rd	1777	1634	-	က	1.05	1.05	1.05	1.05	1.05	1.00	1.05	1.05	1.05	1.00	1.028	1.050	1.050	1.050
11210 Norwood Rd - Powers Rd (Bend)	16121	12090	~	32	1.05	1.04	0.99	1.04	1.05	1.00	1.05	1.04	1.05	1.00	1.025	1.039	1,037	1.042
11364 Ochoco Summit - MP 60.5	22134	1218	~	43	1.05	1.00	0.78	1.01	1.05	1.00	1.05	1.02	0.88	1.00	1.002	0.992	0.982	1.002
11048 OCI Access Rd - Stanton Blvd	5163	2237	•	10	1.05	1.05	1.04	1.05	1.04	1.00	1.05	1.00	1.05	1.00	1.015	1.034	1.032	1.033
10850 O'Neil Jct - Redmond Couplet	8384	-215	-	16	1.05	1.00	0.00	0.98	1.04	1.00	1.03	1.00	1.05	1.00	0.999	0.922	0.891	0.964
11213 Pac Hwy - 42nd St (Springfield)	17143	-2503	9	35	1.05	1.05	0.88	66.0	1.02	1.00	1.05	1.00	0.83	1.00	0.992	0.987	0.984	0.991
11000 Pac Hwy E - Clackamas Co Line	5223	2260	_	10	1,05	1.05	1.05	1.05	1.05	1.00	1.05	1.01	1.05	1.00	1.018	1.039	1.038	1.038
11297 Pacific Hwy W - Gateway St (EB)	7267	3442	-	15	1.05	1.04	1.02	1.01	1.05	1.00	1.05	1.04	1.00	1.00	1.020	1.033	1.033	1.034
10291 Page Rd - Hooker Ave	3989	1851	_	∞	1.05	1.05	1.02	1.05	1.04	1.05	1.05	1.00	1.05	1.00	1.016	1.032	1.030	1.032
11405 Pamelia Rd - Twin Medows	9716	8254	_	19	1.05	1.04	1.04	1.05	1.05	1.00	1.05	1.05	1.05	1.00	1.028	1.048	1.048	1.049
10770 Passing Lanes	3270	2294	•	7	1,05	1.03	1.00	1.01	1.01	1.00	1.05	1.04	1.05	1.00	1.021	1.029	1.029	1.032

IMPACT OF CHANGES TO PAY FACTOR WEIGHTS FOR "F" MIXTURE LOTS

TWOO	O A CH									,								
	I CNS	PRICE	<u> </u>	# SUB				16-3	PAY FACTORS	CTO	S				Current	ALT 1	ALT 2	ALT 3
SECTION	⋛∥	JUST (\$)	ହ∥	LOTS	-	3/4	1/2	1/4	9	9	200	ASPH	ASPH MOIS	COMP	CPF	CPF	CPF	CPF
11207 Passmore Rd - Bayshore Dr	17458	12155	7	35	1.05	0.93	96.0	1.03	1.05	1.00	1.05	1.05	1.05	1.00	1.025	1.028	1.022	1.037
10787 Penn Rd - Cougar Pass	1934	-1432	2	4	1.05	1.05	0.81	0.78	1.05	1.00	1.05	0.91	1.05	1.00	0.976	0.949	0.945	0.956
11300 Perrydale Rd - Crowley Rd	10199	740	-	21	1.05	1.02	0.81	1.02	1.05	1.00	1.05	1.04	0.82	1.00	1.003	0.998	0.990	1.006
11300 Perrydale Rd - Crowley Rd	8104	2533	7	15	1.05	1.05	1.02	1.05	1.05	1.00	1.05	1.05	0.86	1.00	1.013	1.030	1.029	1.030
11043 Phoenix - Valley View Rd	12827	-1866	-	26	1.05	1.02	96.0	1.05	1.05	1.00	1.05	1.00	0.79	1.00	0.994	1.002	0.997	1.003
11253 Pleasant Valley - Green Timber	3958	2779	-	ω	1.05	0.98	0.97	1.04	1.05	1.00	1.05	1.04	1.05	1.00	1.024	1.032	1.028	1.038
10757 Poormans Cr	4818	1303	-	10	1.05	1.04	1.04	0.93	1.05	1.00	1.05	1.01	1.05	1.00	1.012	1.019	1.021	1.019
10425 Powell Bt Jct - Arnold Ice Cave	15637	3751	7	31	1.05	1.05	1.04	0.77	1.04	1.00	1.05	1.01	1.05	1.00	1.009	0.994	1.002	0.994
11573 Powell Butte - Prineville Airport	19944	5022	-	20	1.05	1.05	1.05	1.05	1.00	1.05	1.05	1.05	0.82	1.00	1.009	1.022	1.023	1.020
10926 Rainer - Tide Cr	4500	2128	34	თ	1.05	1.05	1,04	0.99	1.04	1.00	1.05	107	1.05	1.00	1.022	1.036	1.037	1.036
10926 Rainer - Tide Cr	14191	-610	38	29	1.05	1.04	0.92	0.78	1.05	1.00	1.05	0.99	1.05	1.00	0.998	0.980	0.982	0.985
11104 Redmond - Bend (N Unit)	8921	6197	_	18	1.05	1.05	1.04	1.05	1.05	1.00	1.05	1.03	1.05	1.00	1.023	1.04	1.043	1.044
11104 Redmond - Bend (N Unit)	27406	18545	7	54	1.05	1.04	1.03	1.04	1.05	1.00	1.05	1.03	1.05	1.00	1.023	1.040	1.039	1.041
11104 Redmond - Bend (N Unit)	1459	1875	ന	ო	1.05	1.05	1.05	1.05	1.05	1.00	1.05	1.05	1.05	1.00	1.029	1.050	1.050	1.050
	3417	2614	4	9	1.05	1.05	1.04	1.00	1.05	1.00	1.05	1.05	1.05	1.00	1.026	1.042	1.043	1.042
	12104	-2000	4	24	1.05	1.05	0.89	1.03	1.05	1.00	1.05	0.92	1.05	1.00	0.993	0.996	0.988	1.000
11291 Remote Campground - Slater Cr	10250	8024	_	1	1.05	1.05	1.05	1.05	1.05	1.00	1.05	1.05	1.05	1.00	1.029	1.050	1.050	1.050
11291 Remote Campground - Slater Cr	2294	1844	2	က	1.05	1.05	1.05	1.05	1.05	1.00	1.05	1.05	1.05	1.00	1.029	1.050	1.050	1.050
	12720	2091	-	25	1.05	1.05	0.92	0.94	1.04	1.00	1.05	1.00	1.04	1.00	1.007	1.005	1.004	1.010
10852 Rock Creek - Anlauf	4122	2905	2	6	1.05	1.02	0.95	1.04	1.05	1.00	1.05	1,05	1.05	1.00	1.027	1.037	1.033	1.042
	5647	3129	-	12	1.03	1.05	06.0	0.97	1.05	1.00	1.05	1.04	1.05	1.00	1.020	1.022	1.019	1.028
	11580	6783	-	-	1.05	1.05	1.05	1.05	1.05	1.00	1.05	1.05	1.05	1.00	1.029	1.050	1.050	1.050
	6810	4280	2	9	1.05	1.05	1.05	1.05	1.05	1.00	1.05	1.03	1.05	1.00	1.023	1.044	1.044	1.044
11393 Rowena - US 97 Intch, Phase 1	27905	9142	_	34	1.05	1.05	1.02	0.98	1.05	1.00	1.05	1.03	0.98	1.00	1.014	1.025	1.026	1.025
11393 Rowena - US 97 Intch, Phase 1	8716	6101	7	7	1.05	1.05	1.05	1.05	1.05	1.00	1.05	1.05	1.04	1.00	1.028	1.049	1.049	1.049
11393 Rowena - US 97 Intch, Phase 1	21706	12980	4	21	1.05	1.05	1.05	1.04	1.05	1.00	1.05	1.05	1.03	1.00	1.026	1.047	1.047	1.047
11393 Rowena - US 97 Intch, Phase 1	4814	3009	5	2	1.05	1.05	1.05	1.03	1.05	1.00	1.05	1.04	1.05	1.00	1.025	1.044	1.045	1.044
11393 Rowena - US 97 Intch, Phase 1	23590	6992	9	21	1.05	1.05	1.05	1.05	1.03	0.1	1.05	1.05	0.87	1.00	1.013	1.031	1.031	1.029
11256 Rufus - Arlington (W Unit)	75238	53795	က	150	1.05	1.05	96.0	1.04	1.05	1.00	1.05	1.05	1.03	1.00	1.026	1.040	1.039	1.043
10949 Rufus - Arlington (E Unit)	43931	0	-	87	1.05	0.85	0.89	0.98	1.01	1.00	1.05	1.00	0.97	1.00	1.000	0.980	0.971	0.993
11163 Saddle Mt Jct - Coast Range Smt	17585	10155	-	35	1.05	0.87	0.99	1.03	1.05	1.00	1.05	1.04	1.04	1.00	1.022	1.022	1.015	1.031
	1752	-3986	-	က	1.05	1.02	1.00	1.00	1.05	1.00	1.05	1.00	0.00	1.00	0.928	0.927	0.924	0.919
11324 Sams Valley Hwy Jct - Shady Cove	6209	4181	Υ-	7	1.05	1.05	1.01	0.98	1.05	1.00	1.05	1.05	1.05	1.00	1.025	1.036	1.037	1.038
	4354	1969	-	6	1.05	1.02	1.00	1.04	1.04	1.00	1.05	1.00	1.05	1.00	1.014	1.026	1.023	1.028
10992 Sawtell Rd - MP 29	3013	2665	-	2	1.05	1.05	1.05	1.05	1.05	1.00	1.05	1.05	1.05	1.00	1,029	1.050	1.050	1.050
10863 Scottsburg - Wells Cr	4323	2820	-	6	1.05	1.00	0.88	1.04	1.05	1.00	1.04	1.04	1.05	1.00	1.022	1.024	1.018	1.033

 1.012
 1.011
 1.009
 1.016

 0.916
 0.641
 0.613
 0.723

 1.030
 1.050
 1.050
 1.050

AVERAGE MINIMUM MAXIMUM

46148

IMPACT OF CHANGES TO PAY FACTOR WEIGHTS FOR "F" MIXTURE LOTS

CONT	TONS	PRICE		# SUB	<u>_</u>				DAY FACT	DAY FACTORS	000					7 H V	1 - V	C H
NO SECTION	OF MIX ADJUST (\$)	(\$) LSNrq	8	LOTS	S	3/4	1/2	1/4	10	40	200	ASPH	MOIS	COMP	PE	į ö	7 20	2 1 2
10681 Simmons Cr - Pleasant Valley Rd	3695	2149	-	7	-	1	-	-	1 05	100	105		1 05		2 2			1 85
11222 Sisters - Tumalo	7331	742	_	15	1,05	_	_	_	1.05	1.00	1.05	0.96	104	001	1 004	1,020	1.035	1.020
11222 Sisters - Tumalo	14413	10583	7	28	1.05	5 1.04	1.04	1.05	1.05	1.00	1.05	1.05	1.03	1.00	1.027	1.046	1.046	1.047
11339 Siuslaw R - Douglas Co Line	18711	7395	-	19	1.05	5 1.04	1.02	1.05	1.04	1.00	1.05	1.00	1.04	1.00	1.014	1.030	1.028	1.031
10843 Slick Rock Cr - Sulphur Cr	6568	3603	_	13	1.05	5 1.05	1.05	1.04	1.05	1.00	1.05	1.02	1.05	1.00	1.020	1.040	1.040	1.040
10905 Spangler Hill - Mulino	10648	-13093	5	21	1.05	5 0.00	0.77	0.81	0.00	1.00	1.05	1.04	1.03	1.00	0.947	0.732	0.731	0.785
11021 Spring Valley Cr - Salemtowne	9112	5277	~	18	1.05	5 1.03	1.04	1.05	1.05	1.00	1.05	1.04	1.03	1.00	1.024	1.043	1.042	1.044
11468 Sunset Highway - Pacific Hwy	2401	1566	-	က	1.04	1.00	1.03	0.95	0.99	1.00	1.05	1.05	1.03	1.00	1.018	1.018	1.021	1.021
11468 Sunset Highway - Pacific Hwy	4474	3872	7	9	1.0	1.05	0.97	1.01	1.03	1.00	1.05	1.05	1.05	1.00	1.024	1.034	1.033	1.037
11468 Sunset Highway - Pacific Hwy	31613	25414	က	53	1.05	5 1.03	0.82	1.05	1.04	1.00	1.05	1.05	1.01	1.00	1.022	1.022	1.015	1.032
11278 Susan Cr - USFS Boundary	3238	2683	-	9	1.05	5 1.00	0.80	1.05	1.05	1.00	1.05	1.05	1.05	1.00	1.026	1.023	1.014	1.035
10899 Susan Cr - Wright Cr Rd	5843	3231	_	12	1.05	5 0.94	0.84	1.04	1.05	1.00	1.05	1.03	1.05	1.00	1.020	1.014	1.004	1.027
10446 Sutton Lake - Florence	9484	3138	10	19	1.05	5 1.05	1.02	0.94	1.05	1.00	1.05	1.00	1.05	1.00	1.012	1.017	1.018	1.017
10749 Suver - Thousand Oaks Dr	24280	12980	~	48	1.05	5 1.05	1.02	1.04	1.05	1.00	1.05	1.05	1.04	1.00	1.027	1.045	1.044	1.046
11009 Terrebonne - O'Nell Jct	11708	-9537	_	23	1.05	5 1.00	0.89	0.98	1.04	1.00	0.98	0.88	1.05	1.00	0.971	0.961	0.954	0.963
11009 Terrebonne - O'Nell Jct	456	247	2	က	1.05	5 1.05	1.05	1.05	1.05	1.00	1.00	1.05	1.05	1.00	1.024	1.043	1.044	1.040
10649 Trail - Casey (E Unit)	3641	2219	4	7	1.05	5 1.05	1.03	1.04	1.05	1.00	1.05	1.03	1.05	1.00	1.023	1.041	1.040	1.042
11410 Tripp Rd - Knappa	4321	3976	_	4	1.05	5 1.05	1,05	1.05	1.05	1.00	1.05	1.04	1.05	1.00	1.026	1.047	1.047	1.047
11245 Umatilla - McNary	10117	7871	-	19	1.05	1.04	1.01	1.04	1.05	1.00	1.05	1.04	1.05	1.00	1.025	1.041	1.040	1.043
11035 Umpqua Wayside - Elkton	6713	3651	—	13	1.05	5 1.03	0.00	1.05	1,05	1.00	1.05	1.05	1.05	1.00	1.018	0.954	0.922	0.997
10952 W Marquam Intch - N Tigard Intch	33015	14208	_	65	1.05	5 1.03	0.97	1.03	0.99	1.00	1.03	1.02	1.05	1.00	1.014	1.018	1.017	1.020
10432 Weatherly Cr - Grabb Cr	3813	2941	~	7	1.05	1.05	0.95	1.05	1.05	9.	1.05	1.04	1.05	1.00	1.025	1.038	1.035	1.042
11152 Willamette R - Riverside Dr	18206	7220	9	37	1.05	1.04	1.04	1.05	1.05	1.00	1.05	1.04	0.98	1.00	1.020	1.039	1.038	1.039
11015 Williamson R - Modoc Pt	5474	4659	-	Ξ	1.05	1.04	0.85	1.05	1.05	1.00	1.02	1.05	1.05	1.00	1.023	1.027	1.021	1.034
11572 Willowdale - Qualle Road	13847	-21137	_	14	1.05	1.04	1.04	1.03	1.05	1.00	1.05	1.05	0.00	1.00	0.943	0.951	0.951	0.941
10989 Winchester Intch NB Ramps	1802	1698	-	4	1.05	1.05	0.93	1.05	1.05	0.1	1.05	1.05	1.05	1.00	1.027	1.039	1.036	1.044
11229 Wolf Cr - W Fork Dairy Cr	28381	-6824	9	26	1.05	3 1.05	1.01	1.04	1.05	1.00	1.05	0.94	0.93	1.00	0.989	1.003	0.999	1.002
11162 Youngs Bay Br - Warr/Asto Hwy	6269	4785	-	13	1.05	1.04	1.04	1.05	1.03	1.00	1.04	1.04	1.05	1.00	1.024	1.041	1.041	1,041
		3755											AVERAGE	Щ	1 012	5	000	, 10
		62861													5 6	5 6	50.0	0.0
		-0070-											MINIMOR	N O	0.816	0.641	0.613	0.723